File size: 8,921 Bytes
8d7f55c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
#
# Copyright (c) 2024, Daily
#
# SPDX-License-Identifier: BSD 2-Clause License
#

from typing import List

from pipecat.services.openai import OpenAILLMContextFrame, OpenAILLMContext

from pipecat.processors.frame_processor import FrameDirection, FrameProcessor
from pipecat.frames.frames import (
    Frame,
    InterimTranscriptionFrame,
    LLMFullResponseEndFrame,
    LLMFullResponseStartFrame,
    LLMResponseEndFrame,
    LLMResponseStartFrame,
    LLMMessagesFrame,
    StartInterruptionFrame,
    TranscriptionFrame,
    TextFrame,
    UserStartedSpeakingFrame,
    UserStoppedSpeakingFrame)


class LLMResponseAggregator(FrameProcessor):

    def __init__(

        self,

        *,

        messages: List[dict],

        role: str,

        start_frame,

        end_frame,

        accumulator_frame: TextFrame,

        interim_accumulator_frame: TextFrame | None = None,

        handle_interruptions: bool = False

    ):
        super().__init__()

        self._messages = messages
        self._role = role
        self._start_frame = start_frame
        self._end_frame = end_frame
        self._accumulator_frame = accumulator_frame
        self._interim_accumulator_frame = interim_accumulator_frame
        self._handle_interruptions = handle_interruptions

        # Reset our accumulator state.
        self._reset()

    @property
    def messages(self):
        return self._messages

    @property
    def role(self):
        return self._role

    #
    # Frame processor
    #

    # Use cases implemented:
    #
    # S: Start, E: End, T: Transcription, I: Interim, X: Text
    #
    #        S E -> None
    #      S T E -> X
    #    S I T E -> X
    #    S I E T -> X
    #  S I E I T -> X
    #      S E T -> X
    #    S E I T -> X
    #
    # The following case would not be supported:
    #
    #    S I E T1 I T2 -> X
    #
    # and T2 would be dropped.

    async def process_frame(self, frame: Frame, direction: FrameDirection):
        await super().process_frame(frame, direction)

        send_aggregation = False

        if isinstance(frame, self._start_frame):
            self._aggregation = ""
            self._aggregating = True
            self._seen_start_frame = True
            self._seen_end_frame = False
            self._seen_interim_results = False
            await self.push_frame(frame, direction)
        elif isinstance(frame, self._end_frame):
            self._seen_end_frame = True
            self._seen_start_frame = False

            # We might have received the end frame but we might still be
            # aggregating (i.e. we have seen interim results but not the final
            # text).
            self._aggregating = self._seen_interim_results or len(self._aggregation) == 0

            # Send the aggregation if we are not aggregating anymore (i.e. no
            # more interim results received).
            send_aggregation = not self._aggregating
            await self.push_frame(frame, direction)
        elif isinstance(frame, self._accumulator_frame):
            if self._aggregating:
                self._aggregation += f" {frame.text}"
                # We have recevied a complete sentence, so if we have seen the
                # end frame and we were still aggregating, it means we should
                # send the aggregation.
                send_aggregation = self._seen_end_frame

            # We just got our final result, so let's reset interim results.
            self._seen_interim_results = False
        elif self._interim_accumulator_frame and isinstance(frame, self._interim_accumulator_frame):
            self._seen_interim_results = True
        elif self._handle_interruptions and isinstance(frame, StartInterruptionFrame):
            await self._push_aggregation()
            # Reset anyways
            self._reset()
            await self.push_frame(frame, direction)
        else:
            await self.push_frame(frame, direction)

        if send_aggregation:
            await self._push_aggregation()

    async def _push_aggregation(self):
        if len(self._aggregation) > 0:
            self._messages.append({"role": self._role, "content": self._aggregation})

            # Reset the aggregation. Reset it before pushing it down, otherwise
            # if the tasks gets cancelled we won't be able to clear things up.
            self._aggregation = ""

            frame = LLMMessagesFrame(self._messages)
            await self.push_frame(frame)

    def _reset(self):
        self._aggregation = ""
        self._aggregating = False
        self._seen_start_frame = False
        self._seen_end_frame = False
        self._seen_interim_results = False


class LLMAssistantResponseAggregator(LLMResponseAggregator):
    def __init__(self, messages: List[dict] = []):
        super().__init__(
            messages=messages,
            role="assistant",
            start_frame=LLMFullResponseStartFrame,
            end_frame=LLMFullResponseEndFrame,
            accumulator_frame=TextFrame,
            handle_interruptions=True
        )


class LLMUserResponseAggregator(LLMResponseAggregator):
    def __init__(self, messages: List[dict] = []):
        super().__init__(
            messages=messages,
            role="user",
            start_frame=UserStartedSpeakingFrame,
            end_frame=UserStoppedSpeakingFrame,
            accumulator_frame=TranscriptionFrame,
            interim_accumulator_frame=InterimTranscriptionFrame
        )


class LLMFullResponseAggregator(FrameProcessor):
    """This class aggregates Text frames until it receives a

    LLMResponseEndFrame, then emits the concatenated text as

    a single text frame.



    given the following frames:



        TextFrame("Hello,")

        TextFrame(" world.")

        TextFrame(" I am")

        TextFrame(" an LLM.")

        LLMResponseEndFrame()]



    this processor will yield nothing for the first 4 frames, then



        TextFrame("Hello, world. I am an LLM.")

        LLMResponseEndFrame()



    when passed the last frame.



    >>> async def print_frames(aggregator, frame):

    ...     async for frame in aggregator.process_frame(frame):

    ...         if isinstance(frame, TextFrame):

    ...             print(frame.text)

    ...         else:

    ...             print(frame.__class__.__name__)



    >>> aggregator = LLMFullResponseAggregator()

    >>> asyncio.run(print_frames(aggregator, TextFrame("Hello,")))

    >>> asyncio.run(print_frames(aggregator, TextFrame(" world.")))

    >>> asyncio.run(print_frames(aggregator, TextFrame(" I am")))

    >>> asyncio.run(print_frames(aggregator, TextFrame(" an LLM.")))

    >>> asyncio.run(print_frames(aggregator, LLMResponseEndFrame()))

    Hello, world. I am an LLM.

    LLMResponseEndFrame

    """

    def __init__(self):
        super().__init__()
        self._aggregation = ""

    async def process_frame(self, frame: Frame, direction: FrameDirection):
        await super().process_frame(frame, direction)

        if isinstance(frame, TextFrame):
            self._aggregation += frame.text
        elif isinstance(frame, LLMFullResponseEndFrame):
            await self.push_frame(TextFrame(self._aggregation))
            await self.push_frame(frame)
            self._aggregation = ""
        else:
            await self.push_frame(frame, direction)


class LLMContextAggregator(LLMResponseAggregator):
    def __init__(self, *, context: OpenAILLMContext, **kwargs):

        self._context = context
        super().__init__(**kwargs)

    async def _push_aggregation(self):
        if len(self._aggregation) > 0:
            self._context.add_message({"role": self._role, "content": self._aggregation})
            frame = OpenAILLMContextFrame(self._context)
            await self.push_frame(frame)

            # Reset our accumulator state.
            self._reset()


class LLMAssistantContextAggregator(LLMContextAggregator):
    def __init__(self, context: OpenAILLMContext):
        super().__init__(
            messages=[],
            context=context,
            role="assistant",
            start_frame=LLMResponseStartFrame,
            end_frame=LLMResponseEndFrame,
            accumulator_frame=TextFrame
        )


class LLMUserContextAggregator(LLMContextAggregator):
    def __init__(self, context: OpenAILLMContext):
        super().__init__(
            messages=[],
            context=context,
            role="user",
            start_frame=UserStartedSpeakingFrame,
            end_frame=UserStoppedSpeakingFrame,
            accumulator_frame=TranscriptionFrame,
            interim_accumulator_frame=InterimTranscriptionFrame
        )