File size: 9,391 Bytes
7f05983
 
 
 
 
 
 
 
 
 
f623e18
 
7f05983
f623e18
7f05983
 
 
 
 
f623e18
7f05983
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f623e18
7f05983
 
 
446457d
 
 
f623e18
446457d
 
f623e18
 
7f05983
 
 
 
f623e18
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b4b9a80
f623e18
b4b9a80
7f05983
 
f623e18
b4b9a80
7f05983
f623e18
 
 
 
 
b4b9a80
f623e18
7f05983
f623e18
 
 
 
b4b9a80
 
f623e18
b4b9a80
f623e18
 
 
 
b4b9a80
7f05983
 
 
 
 
f623e18
 
 
 
7f05983
 
 
 
f623e18
 
 
7f05983
 
 
 
f623e18
7f05983
 
 
 
4665d41
7f05983
f623e18
 
 
4665d41
7f05983
f623e18
 
 
7f05983
f623e18
 
 
 
4665d41
f623e18
 
7f05983
 
 
 
 
f623e18
 
 
237b16a
f623e18
 
 
237b16a
4665d41
7f05983
f623e18
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7f05983
f623e18
7f05983
 
f623e18
 
 
 
 
7f05983
 
 
f623e18
 
7f05983
4665d41
f623e18
4665d41
f623e18
7f05983
f623e18
7f05983
f623e18
7f05983
f623e18
7f05983
f623e18
4665d41
f623e18
7f05983
f623e18
7f05983
f623e18
7f05983
f623e18
7f05983
f623e18
b4b9a80
7f05983
f623e18
 
 
 
 
 
 
7f05983
 
f623e18
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
import streamlit as st
from predict import run_prediction
from io import StringIO
import PyPDF4
import docx2txt
import pdfplumber
import difflib
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity

# ========== CONFIG ==========
st.set_page_config(layout="wide", page_title="Contract Analysis Suite", page_icon="πŸ“‘")

# ========== SESSION STATE ==========
if 'comparison_results' not in st.session_state:
    st.session_state.comparison_results = None
if 'analysis_results' not in st.session_state:
    st.session_state.analysis_results = None

# ========== CACHED HELPERS ==========
@st.cache_data(show_spinner=False)
def load_questions():
    try:
        with open('data/questions.txt') as f:
            return [q.strip() for q in f.readlines() if q.strip()]
    except Exception as e:
        st.error(f"Error loading questions: {str(e)}")
        return []

@st.cache_data(show_spinner=False)
def load_questions_short():
    try:
        with open('data/questions_short.txt') as f:
            return [q.strip() for q in f.readlines() if q.strip()]
    except Exception as e:
        st.error(f"Error loading short questions: {str(e)}")
        return []

# ========== FILE PARSING ==========
def extract_text_from_pdf(uploaded_file):
    try:
        with pdfplumber.open(uploaded_file) as pdf:
            full_text = ""
            for page in pdf.pages:
                try:
                    text = page.extract_text_formatted()
                except AttributeError:
                    text = page.extract_text()
                full_text += (text or "") + "\n\n"
            return full_text.strip()
    except Exception as e:
        st.error(f"PDF extraction error: {str(e)}")
        return ""

def load_contract(file):
    if not file:
        return ""
    try:
        ext = file.name.split('.')[-1].lower()
        if ext == 'txt':
            return StringIO(file.getvalue().decode("utf-8")).read().strip()
        elif ext == 'pdf':
            content = extract_text_from_pdf(file)
            if not content:
                pdfReader = PyPDF4.PdfFileReader(file)
                return "\n\n".join([p.extractText() for p in pdfReader.pages])
            return content
        elif ext == 'docx':
            return docx2txt.process(file).strip()
        else:
            st.warning("Unsupported file type")
            return ""
    except Exception as e:
        st.error(f"Error loading file: {str(e)}")
        return ""

# ========== TEXT UTILS ==========
def highlight_differences_words(text1, text2):
    differ = difflib.Differ()
    diff = list(differ.compare(text1.split(), text2.split()))
    h1, h2 = "", ""
    for i, word in enumerate(diff):
        if word.startswith("- "):
            w = word[2:]
            h1 += f'<span style="background-color:#ffcccc;">{w}</span> '
            if i+1 < len(diff) and diff[i+1].startswith("+ "):
                h2 += f'<span style="background-color:#ffffcc;">{diff[i+1][2:]}</span> '
                diff[i+1] = '  '
            else:
                h2 += " "
        elif word.startswith("+ "):
            w = word[2:]
            h2 += f'<span style="background-color:#ccffcc;">{w}</span> '
            if i-1 >= 0 and diff[i-1].startswith("- "):
                h1 += f'<span style="background-color:#ffffcc;">{diff[i-1][2:]}</span> '
                diff[i-1] = '  '
            else:
                h1 += " "
        elif word.startswith("  "):
            w = word[2:] + " "
            h1 += w
            h2 += w
    return h1.strip(), h2.strip()

def calculate_similarity(text1, text2):
    if not text1.strip() or not text2.strip():
        return 0.0
    try:
        vectorizer = TfidfVectorizer(token_pattern=r'(?u)\b\w+\b')
        tfidf = vectorizer.fit_transform([text1, text2])
        sim = cosine_similarity(tfidf[0:1], tfidf[1:2])
        return sim[0][0] * 100
    except:
        return difflib.SequenceMatcher(None, text1, text2).ratio() * 100

# ========== MAIN APP ==========
def main():
    st.title("πŸ“‘ Contract Analysis Suite")
    st.markdown("Compare documents and analyze legal clauses using AI-powered tools.")

    questions = load_questions()
    questions_short = load_questions_short()

    if not questions or not questions_short or len(questions) != len(questions_short):
        st.error("Questions failed to load properly.")
        return

    st.header("1. Upload Documents")
    col1, col2 = st.columns(2)

    with col1:
        file1 = st.file_uploader("Upload First Document", type=["txt", "pdf", "docx"], key="file1")
        text1 = load_contract(file1) if file1 else ""
        display1 = st.empty()

    with col2:
        file2 = st.file_uploader("Upload Second Document", type=["txt", "pdf", "docx"], key="file2")
        text2 = load_contract(file2) if file2 else ""
        display2 = st.empty()

    if file1:
        display1.text_area("Document 1 Content", value=text1, height=400, key="area1")
    if file2:
        display2.text_area("Document 2 Content", value=text2, height=400, key="area2")

    if not (file1 and file2):
        st.warning("Please upload both documents.")
        return

    st.header("2. Document Comparison")
    with st.expander("Show Document Differences", expanded=True):
        if st.button("Compare Documents"):
            with st.spinner("Analyzing..."):
                sim = calculate_similarity(text1, text2)
                diff1, diff2 = highlight_differences_words(text1, text2)
                st.session_state.comparison_results = {
                    'similarity': sim,
                    'diff1': diff1,
                    'diff2': diff2,
                }

        if st.session_state.comparison_results:
            sim = st.session_state.comparison_results['similarity']
            st.metric("Document Similarity Score", f"{sim:.2f}%")

            if sim >= 70:
                st.markdown("### Visual Difference Highlighting")
                sync_scroll_script = """
                <script>
                const left = document.getElementById("left");
                const right = document.getElementById("right");

                left.onscroll = function() {
                    right.scrollTop = left.scrollTop;
                };
                right.onscroll = function() {
                    left.scrollTop = right.scrollTop;
                };
                </script>
                """

                html = f"""
                <div style="display: flex; gap: 20px;">
                    <div id="left" style="width: 100%; height: 500px; overflow-y: auto; padding: 10px; font-family: monospace; border: 1px solid #ccc;">
                        {st.session_state.comparison_results['diff1']}
                    </div>
                    <div id="right" style="width: 100%; height: 500px; overflow-y: auto; padding: 10px; font-family: monospace; border: 1px solid #ccc;">
                        {st.session_state.comparison_results['diff2']}
                    </div>
                </div>
                {sync_scroll_script}
                """
                st.markdown(html, unsafe_allow_html=True)
            else:
                st.warning("Similarity below 70%. Skipping visual diff display.")

    # ========== CLAUSE ANALYSIS ==========
    st.header("3. Clause Analysis")
    try:
        question_short = st.selectbox("Select a legal question to analyze:", questions_short)
        idx = questions_short.index(question_short)
        question = questions[idx]
    except:
        st.error("Error selecting question")
        return

    if st.button("Analyze Both Documents"):
        if not (text1.strip() and text2.strip()):
            st.error("Ensure both documents have content.")
            return

        col1, col2 = st.columns(2)

        with col1:
            st.subheader("First Document Analysis")
            with st.spinner("Processing..."):
                try:
                    ans1 = run_prediction([question], text1, 'marshmellow77/roberta-base-cuad', n_best_size=5).get('0', 'No answer')
                    st.session_state.analysis_results = st.session_state.analysis_results or {}
                    st.session_state.analysis_results['doc1'] = ans1
                except Exception as e:
                    st.session_state.analysis_results['doc1'] = f"Failed: {e}"

        with col2:
            st.subheader("Second Document Analysis")
            with st.spinner("Processing..."):
                try:
                    ans2 = run_prediction([question], text2, 'marshmellow77/roberta-base-cuad', n_best_size=5).get('0', 'No answer')
                    st.session_state.analysis_results = st.session_state.analysis_results or {}
                    st.session_state.analysis_results['doc2'] = ans2
                except Exception as e:
                    st.session_state.analysis_results['doc2'] = f"Failed: {e}"

    if st.session_state.analysis_results:
        col1, col2 = st.columns(2)
        with col1:
            st.subheader("First Document Result")
            st.success(st.session_state.analysis_results.get('doc1', 'No analysis yet'))
        with col2:
            st.subheader("Second Document Result")
            st.success(st.session_state.analysis_results.get('doc2', 'No analysis yet'))

if __name__ == "__main__":
    main()