Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -7,13 +7,14 @@ import pdfplumber
|
|
| 7 |
import difflib
|
| 8 |
from sklearn.feature_extraction.text import TfidfVectorizer
|
| 9 |
from sklearn.metrics.pairwise import cosine_similarity
|
| 10 |
-
import
|
|
|
|
| 11 |
|
| 12 |
# ========== CONFIGURATION ==========
|
| 13 |
st.set_page_config(
|
| 14 |
layout="wide",
|
| 15 |
page_title="Contract Analysis Suite",
|
| 16 |
-
page_icon="
|
| 17 |
)
|
| 18 |
|
| 19 |
# Initialize session state variables if they don't exist
|
|
@@ -48,11 +49,11 @@ def extract_text_from_pdf(uploaded_file):
|
|
| 48 |
full_text = ""
|
| 49 |
for page in pdf.pages:
|
| 50 |
try:
|
| 51 |
-
text = page.extract_text_formatted()
|
| 52 |
except AttributeError:
|
| 53 |
text = page.extract_text()
|
| 54 |
if text:
|
| 55 |
-
full_text += text + "\n\n"
|
| 56 |
else:
|
| 57 |
full_text += page.extract_text() + "\n\n"
|
| 58 |
return full_text if full_text.strip() else ""
|
|
@@ -60,8 +61,6 @@ def extract_text_from_pdf(uploaded_file):
|
|
| 60 |
st.error(f"PDF extraction error: {str(e)}")
|
| 61 |
return ""
|
| 62 |
|
| 63 |
-
|
| 64 |
-
|
| 65 |
def highlight_differences_words(text1, text2):
|
| 66 |
differ = difflib.Differ()
|
| 67 |
diff = list(differ.compare(text1.split(), text2.split()))
|
|
@@ -73,39 +72,64 @@ def highlight_differences_words(text1, text2):
|
|
| 73 |
if word.startswith("- "):
|
| 74 |
removed_word = word[2:]
|
| 75 |
highlighted_text1 += f'<span style="background-color:#ffcccc; display: inline-block;">{removed_word}</span>'
|
| 76 |
-
# Check for corresponding addition to highlight as changed
|
| 77 |
if i + 1 < len(diff) and diff[i + 1].startswith("+ "):
|
| 78 |
added_word = diff[i + 1][2:]
|
| 79 |
-
highlighted_text2 += f'<span style="background-color:#ffffcc; display: inline-block;">{added_word}</span>'
|
| 80 |
-
diff[i + 1] = ' '
|
| 81 |
else:
|
| 82 |
highlighted_text2 += " "
|
| 83 |
elif word.startswith("+ "):
|
| 84 |
added_word = word[2:]
|
| 85 |
highlighted_text2 += f'<span style="background-color:#ccffcc; display: inline-block;">{added_word}</span>'
|
| 86 |
-
# Check for corresponding removal
|
| 87 |
if i - 1 >= 0 and diff[i - 1].startswith("- "):
|
| 88 |
-
highlighted_text1 += f'<span style="background-color:#ffffcc; display: inline-block;">{diff[i-1][2:]}</span>'
|
| 89 |
diff[i-1] = ' '
|
| 90 |
else:
|
| 91 |
highlighted_text1 += " "
|
| 92 |
-
|
| 93 |
elif word.startswith(" "):
|
| 94 |
highlighted_text1 += word[2:] + " "
|
| 95 |
highlighted_text2 += word[2:] + " "
|
| 96 |
|
| 97 |
return highlighted_text1, highlighted_text2
|
|
|
|
| 98 |
def calculate_similarity(text1, text2):
|
| 99 |
if not text1.strip() or not text2.strip():
|
| 100 |
return 0.0
|
| 101 |
|
| 102 |
try:
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
similarity =
|
| 106 |
-
return similarity
|
| 107 |
-
except
|
| 108 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 109 |
|
| 110 |
def load_contract(file):
|
| 111 |
if file is None:
|
|
@@ -118,7 +142,6 @@ def load_contract(file):
|
|
| 118 |
elif ext == 'pdf':
|
| 119 |
content = extract_text_from_pdf(file)
|
| 120 |
if not content:
|
| 121 |
-
# Fallback to PyPDF4
|
| 122 |
pdfReader = PyPDF4.PdfFileReader(file)
|
| 123 |
full_text = ""
|
| 124 |
for page in pdfReader.pages:
|
|
@@ -145,68 +168,33 @@ def main():
|
|
| 145 |
st.error("Failed to load questions or questions mismatch. Please check data files.")
|
| 146 |
return
|
| 147 |
|
| 148 |
-
st.title("
|
| 149 |
st.markdown("""
|
| 150 |
Compare documents and analyze legal clauses using AI-powered question answering.
|
| 151 |
""")
|
| 152 |
|
| 153 |
-
# ===== DOCUMENT UPLOAD SECTION =====
|
| 154 |
st.header("1. Upload Documents")
|
| 155 |
col1, col2 = st.columns(2)
|
| 156 |
|
| 157 |
with col1:
|
| 158 |
-
uploaded_file1 = st.file_uploader(
|
| 159 |
-
"Upload First Document",
|
| 160 |
-
type=["txt", "pdf", "docx"],
|
| 161 |
-
key="file1"
|
| 162 |
-
)
|
| 163 |
contract_text1 = load_contract(uploaded_file1) if uploaded_file1 else ""
|
| 164 |
-
|
| 165 |
|
| 166 |
with col2:
|
| 167 |
-
uploaded_file2 = st.file_uploader(
|
| 168 |
-
"Upload Second Document",
|
| 169 |
-
type=["txt", "pdf", "docx"],
|
| 170 |
-
key="file2"
|
| 171 |
-
)
|
| 172 |
contract_text2 = load_contract(uploaded_file2) if uploaded_file2 else ""
|
| 173 |
-
|
| 174 |
|
| 175 |
-
# Update document displays (initial content)
|
| 176 |
if uploaded_file1:
|
| 177 |
-
|
| 178 |
-
doc1_container.markdown(doc1_content, unsafe_allow_html=True)
|
| 179 |
if uploaded_file2:
|
| 180 |
-
|
| 181 |
-
doc2_container.markdown(doc2_content, unsafe_allow_html=True)
|
| 182 |
-
|
| 183 |
-
# JavaScript for synchronized scrolling of the initial document panes
|
| 184 |
-
scroll_script = """
|
| 185 |
-
<script>
|
| 186 |
-
function syncScroll(id, otherId) {
|
| 187 |
-
var element = document.getElementById(id);
|
| 188 |
-
var otherElement = document.getElementById(otherId);
|
| 189 |
-
if (element && otherElement) {
|
| 190 |
-
element.addEventListener('scroll', function() {
|
| 191 |
-
otherElement.scrollTop = element.scrollTop;
|
| 192 |
-
});
|
| 193 |
-
otherElement.addEventListener('scroll', function() {
|
| 194 |
-
element.scrollTop = otherElement.scrollTop;
|
| 195 |
-
});
|
| 196 |
-
}
|
| 197 |
-
}
|
| 198 |
-
window.onload = function() {
|
| 199 |
-
syncScroll('doc1_text', 'doc2_text');
|
| 200 |
-
};
|
| 201 |
-
</script>
|
| 202 |
-
"""
|
| 203 |
-
components.html(scroll_script, height=0)
|
| 204 |
|
| 205 |
if not (uploaded_file1 and uploaded_file2):
|
| 206 |
st.warning("Please upload both documents to proceed")
|
| 207 |
return
|
| 208 |
|
| 209 |
-
# ===== DOCUMENT COMPARISON SECTION =====
|
| 210 |
st.header("2. Document Comparison")
|
| 211 |
|
| 212 |
with st.expander("Show Document Differences", expanded=True):
|
|
@@ -218,7 +206,6 @@ def main():
|
|
| 218 |
|
| 219 |
similarity_score = calculate_similarity(contract_text1, contract_text2)
|
| 220 |
|
| 221 |
-
|
| 222 |
highlighted_diff1, highlighted_diff2 = highlight_differences_words(contract_text1, contract_text2)
|
| 223 |
st.session_state.comparison_results = {
|
| 224 |
'similarity_score': similarity_score,
|
|
@@ -226,61 +213,40 @@ def main():
|
|
| 226 |
'highlighted_diff2': highlighted_diff2,
|
| 227 |
}
|
| 228 |
|
| 229 |
-
|
| 230 |
-
# Display comparison results
|
| 231 |
if st.session_state.comparison_results:
|
| 232 |
-
st.metric("Document Similarity Score",
|
| 233 |
-
f"{st.session_state.comparison_results['similarity_score']:.2f}%")
|
| 234 |
|
| 235 |
-
if st.session_state.comparison_results['similarity_score']
|
| 236 |
st.warning("Significant differences detected")
|
| 237 |
|
| 238 |
st.markdown("**Visual Difference Highlighting:**")
|
| 239 |
|
| 240 |
-
|
| 241 |
-
with
|
| 242 |
st.markdown("### Original Document")
|
| 243 |
-
|
| 244 |
-
|
| 245 |
-
with col2_diff:
|
| 246 |
st.markdown("### Modified Document")
|
| 247 |
-
|
| 248 |
-
|
| 249 |
-
|
| 250 |
-
|
| 251 |
-
|
| 252 |
-
|
| 253 |
-
|
| 254 |
-
|
| 255 |
-
|
| 256 |
-
|
| 257 |
-
|
| 258 |
-
|
| 259 |
-
|
| 260 |
-
|
| 261 |
-
|
| 262 |
-
});
|
| 263 |
-
}
|
| 264 |
-
}
|
| 265 |
-
// Execute this script after the elements are rendered
|
| 266 |
-
setTimeout(function() {
|
| 267 |
-
syncDiffScroll('diff1_text', 'diff2_text');
|
| 268 |
-
}, 200); // Increased delay to ensure rendering
|
| 269 |
-
</script>
|
| 270 |
-
"""
|
| 271 |
-
components.html(diff_scroll_script, height=0)
|
| 272 |
-
|
| 273 |
|
| 274 |
-
# ===== QUESTION ANALYSIS SECTION =====
|
| 275 |
st.header("3. Clause Analysis")
|
| 276 |
|
| 277 |
try:
|
| 278 |
-
question_selected = st.selectbox(
|
| 279 |
-
'Select a legal question to analyze:',
|
| 280 |
-
questions_short,
|
| 281 |
-
index=0,
|
| 282 |
-
key="question_select"
|
| 283 |
-
)
|
| 284 |
question_idx = questions_short.index(question_selected)
|
| 285 |
selected_question = questions[question_idx]
|
| 286 |
except Exception as e:
|
|
@@ -292,9 +258,9 @@ def main():
|
|
| 292 |
st.error("Please ensure both documents have readable content")
|
| 293 |
return
|
| 294 |
|
| 295 |
-
|
| 296 |
|
| 297 |
-
with
|
| 298 |
st.subheader("First Document Analysis")
|
| 299 |
with st.spinner('Processing first document...'):
|
| 300 |
try:
|
|
@@ -306,7 +272,7 @@ def main():
|
|
| 306 |
st.session_state.analysis_results = st.session_state.analysis_results or {}
|
| 307 |
st.session_state.analysis_results['doc1'] = f"Analysis failed: {str(e)}"
|
| 308 |
|
| 309 |
-
with
|
| 310 |
st.subheader("Second Document Analysis")
|
| 311 |
with st.spinner('Processing second document...'):
|
| 312 |
try:
|
|
@@ -318,16 +284,15 @@ def main():
|
|
| 318 |
st.session_state.analysis_results = st.session_state.analysis_results or {}
|
| 319 |
st.session_state.analysis_results['doc2'] = f"Analysis failed: {str(e)}"
|
| 320 |
|
| 321 |
-
# Display analysis results
|
| 322 |
if st.session_state.analysis_results:
|
| 323 |
-
|
| 324 |
-
with
|
| 325 |
st.subheader("First Document Analysis")
|
| 326 |
st.success(st.session_state.analysis_results.get('doc1', 'No analysis performed yet'))
|
| 327 |
|
| 328 |
-
with
|
| 329 |
st.subheader("Second Document Analysis")
|
| 330 |
st.success(st.session_state.analysis_results.get('doc2', 'No analysis performed yet'))
|
| 331 |
|
| 332 |
if __name__ == "__main__":
|
| 333 |
-
main()
|
|
|
|
| 7 |
import difflib
|
| 8 |
from sklearn.feature_extraction.text import TfidfVectorizer
|
| 9 |
from sklearn.metrics.pairwise import cosine_similarity
|
| 10 |
+
from sentence_transformers import SentenceTransformer, util
|
| 11 |
+
from fpdf import FPDF
|
| 12 |
|
| 13 |
# ========== CONFIGURATION ==========
|
| 14 |
st.set_page_config(
|
| 15 |
layout="wide",
|
| 16 |
page_title="Contract Analysis Suite",
|
| 17 |
+
page_icon="π"
|
| 18 |
)
|
| 19 |
|
| 20 |
# Initialize session state variables if they don't exist
|
|
|
|
| 49 |
full_text = ""
|
| 50 |
for page in pdf.pages:
|
| 51 |
try:
|
| 52 |
+
text = page.extract_text_formatted()
|
| 53 |
except AttributeError:
|
| 54 |
text = page.extract_text()
|
| 55 |
if text:
|
| 56 |
+
full_text += text + "\n\n"
|
| 57 |
else:
|
| 58 |
full_text += page.extract_text() + "\n\n"
|
| 59 |
return full_text if full_text.strip() else ""
|
|
|
|
| 61 |
st.error(f"PDF extraction error: {str(e)}")
|
| 62 |
return ""
|
| 63 |
|
|
|
|
|
|
|
| 64 |
def highlight_differences_words(text1, text2):
|
| 65 |
differ = difflib.Differ()
|
| 66 |
diff = list(differ.compare(text1.split(), text2.split()))
|
|
|
|
| 72 |
if word.startswith("- "):
|
| 73 |
removed_word = word[2:]
|
| 74 |
highlighted_text1 += f'<span style="background-color:#ffcccc; display: inline-block;">{removed_word}</span>'
|
|
|
|
| 75 |
if i + 1 < len(diff) and diff[i + 1].startswith("+ "):
|
| 76 |
added_word = diff[i + 1][2:]
|
| 77 |
+
highlighted_text2 += f'<span style="background-color:#ffffcc; display: inline-block;">{added_word}</span>'
|
| 78 |
+
diff[i + 1] = ' '
|
| 79 |
else:
|
| 80 |
highlighted_text2 += " "
|
| 81 |
elif word.startswith("+ "):
|
| 82 |
added_word = word[2:]
|
| 83 |
highlighted_text2 += f'<span style="background-color:#ccffcc; display: inline-block;">{added_word}</span>'
|
|
|
|
| 84 |
if i - 1 >= 0 and diff[i - 1].startswith("- "):
|
| 85 |
+
highlighted_text1 += f'<span style="background-color:#ffffcc; display: inline-block;">{diff[i-1][2:]}</span>'
|
| 86 |
diff[i-1] = ' '
|
| 87 |
else:
|
| 88 |
highlighted_text1 += " "
|
|
|
|
| 89 |
elif word.startswith(" "):
|
| 90 |
highlighted_text1 += word[2:] + " "
|
| 91 |
highlighted_text2 += word[2:] + " "
|
| 92 |
|
| 93 |
return highlighted_text1, highlighted_text2
|
| 94 |
+
|
| 95 |
def calculate_similarity(text1, text2):
|
| 96 |
if not text1.strip() or not text2.strip():
|
| 97 |
return 0.0
|
| 98 |
|
| 99 |
try:
|
| 100 |
+
model = SentenceTransformer('all-MiniLM-L6-v2')
|
| 101 |
+
embeddings = model.encode([text1, text2], convert_to_tensor=True)
|
| 102 |
+
similarity = util.cos_sim(embeddings[0], embeddings[1])
|
| 103 |
+
return float(similarity.item()) * 100
|
| 104 |
+
except Exception as e:
|
| 105 |
+
st.error(f"Similarity calculation error: {e}")
|
| 106 |
+
return 0.0
|
| 107 |
+
|
| 108 |
+
def generate_pdf_report(similarity_score, doc1, doc2):
|
| 109 |
+
pdf = FPDF()
|
| 110 |
+
pdf.add_page()
|
| 111 |
+
pdf.set_auto_page_break(auto=True, margin=15)
|
| 112 |
+
|
| 113 |
+
pdf.set_font("Arial", 'B', 16)
|
| 114 |
+
pdf.cell(0, 10, "Contract Comparison Report", ln=True, align="C")
|
| 115 |
+
|
| 116 |
+
pdf.set_font("Arial", '', 12)
|
| 117 |
+
pdf.ln(10)
|
| 118 |
+
pdf.multi_cell(0, 10, f"Document Similarity Score: {similarity_score:.2f}%")
|
| 119 |
+
|
| 120 |
+
pdf.ln(5)
|
| 121 |
+
pdf.set_font("Arial", 'B', 12)
|
| 122 |
+
pdf.cell(0, 10, "Document 1 Excerpt:", ln=True)
|
| 123 |
+
pdf.set_font("Arial", '', 10)
|
| 124 |
+
pdf.multi_cell(0, 10, doc1[:1000])
|
| 125 |
+
|
| 126 |
+
pdf.ln(5)
|
| 127 |
+
pdf.set_font("Arial", 'B', 12)
|
| 128 |
+
pdf.cell(0, 10, "Document 2 Excerpt:", ln=True)
|
| 129 |
+
pdf.set_font("Arial", '', 10)
|
| 130 |
+
pdf.multi_cell(0, 10, doc2[:1000])
|
| 131 |
+
|
| 132 |
+
return pdf.output(dest='S').encode('latin1')
|
| 133 |
|
| 134 |
def load_contract(file):
|
| 135 |
if file is None:
|
|
|
|
| 142 |
elif ext == 'pdf':
|
| 143 |
content = extract_text_from_pdf(file)
|
| 144 |
if not content:
|
|
|
|
| 145 |
pdfReader = PyPDF4.PdfFileReader(file)
|
| 146 |
full_text = ""
|
| 147 |
for page in pdfReader.pages:
|
|
|
|
| 168 |
st.error("Failed to load questions or questions mismatch. Please check data files.")
|
| 169 |
return
|
| 170 |
|
| 171 |
+
st.title("π Contract Analysis Suite")
|
| 172 |
st.markdown("""
|
| 173 |
Compare documents and analyze legal clauses using AI-powered question answering.
|
| 174 |
""")
|
| 175 |
|
|
|
|
| 176 |
st.header("1. Upload Documents")
|
| 177 |
col1, col2 = st.columns(2)
|
| 178 |
|
| 179 |
with col1:
|
| 180 |
+
uploaded_file1 = st.file_uploader("Upload First Document", type=["txt", "pdf", "docx"], key="file1")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 181 |
contract_text1 = load_contract(uploaded_file1) if uploaded_file1 else ""
|
| 182 |
+
doc1_display = st.empty()
|
| 183 |
|
| 184 |
with col2:
|
| 185 |
+
uploaded_file2 = st.file_uploader("Upload Second Document", type=["txt", "pdf", "docx"], key="file2")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 186 |
contract_text2 = load_contract(uploaded_file2) if uploaded_file2 else ""
|
| 187 |
+
doc2_display = st.empty()
|
| 188 |
|
|
|
|
| 189 |
if uploaded_file1:
|
| 190 |
+
doc1_display.text_area("Document 1 Content", value=contract_text1, height=400, key="area1")
|
|
|
|
| 191 |
if uploaded_file2:
|
| 192 |
+
doc2_display.text_area("Document 2 Content", value=contract_text2, height=400, key="area2")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 193 |
|
| 194 |
if not (uploaded_file1 and uploaded_file2):
|
| 195 |
st.warning("Please upload both documents to proceed")
|
| 196 |
return
|
| 197 |
|
|
|
|
| 198 |
st.header("2. Document Comparison")
|
| 199 |
|
| 200 |
with st.expander("Show Document Differences", expanded=True):
|
|
|
|
| 206 |
|
| 207 |
similarity_score = calculate_similarity(contract_text1, contract_text2)
|
| 208 |
|
|
|
|
| 209 |
highlighted_diff1, highlighted_diff2 = highlight_differences_words(contract_text1, contract_text2)
|
| 210 |
st.session_state.comparison_results = {
|
| 211 |
'similarity_score': similarity_score,
|
|
|
|
| 213 |
'highlighted_diff2': highlighted_diff2,
|
| 214 |
}
|
| 215 |
|
|
|
|
|
|
|
| 216 |
if st.session_state.comparison_results:
|
| 217 |
+
st.metric("Document Similarity Score", f"{st.session_state.comparison_results['similarity_score']:.2f}%")
|
|
|
|
| 218 |
|
| 219 |
+
if st.session_state.comparison_results['similarity_score'] < 50:
|
| 220 |
st.warning("Significant differences detected")
|
| 221 |
|
| 222 |
st.markdown("**Visual Difference Highlighting:**")
|
| 223 |
|
| 224 |
+
col1, col2 = st.columns(2)
|
| 225 |
+
with col1:
|
| 226 |
st.markdown("### Original Document")
|
| 227 |
+
st.markdown(f'<div style="border:1px solid #ccc; padding:10px; white-space: pre-wrap; font-family: monospace; font-size: 0.9em; max-height: 500px; overflow-y: auto;">{st.session_state.comparison_results["highlighted_diff1"]}</div>', unsafe_allow_html=True)
|
| 228 |
+
with col2:
|
|
|
|
| 229 |
st.markdown("### Modified Document")
|
| 230 |
+
st.markdown(f'<div style="border:1px solid #ccc; padding:10px; white-space: pre-wrap; font-family: monospace; font-size: 0.9em; max-height: 500px; overflow-y: auto;">{st.session_state.comparison_results["highlighted_diff2"]}</div>', unsafe_allow_html=True)
|
| 231 |
+
|
| 232 |
+
if st.button("Download PDF Report"):
|
| 233 |
+
with st.spinner("Generating report..."):
|
| 234 |
+
pdf_bytes = generate_pdf_report(
|
| 235 |
+
st.session_state.comparison_results['similarity_score'],
|
| 236 |
+
contract_text1,
|
| 237 |
+
contract_text2
|
| 238 |
+
)
|
| 239 |
+
st.download_button(
|
| 240 |
+
label="Click to download PDF",
|
| 241 |
+
data=pdf_bytes,
|
| 242 |
+
file_name="contract_comparison_report.pdf",
|
| 243 |
+
mime="application/pdf"
|
| 244 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 245 |
|
|
|
|
| 246 |
st.header("3. Clause Analysis")
|
| 247 |
|
| 248 |
try:
|
| 249 |
+
question_selected = st.selectbox('Select a legal question to analyze:', questions_short, index=0, key="question_select")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 250 |
question_idx = questions_short.index(question_selected)
|
| 251 |
selected_question = questions[question_idx]
|
| 252 |
except Exception as e:
|
|
|
|
| 258 |
st.error("Please ensure both documents have readable content")
|
| 259 |
return
|
| 260 |
|
| 261 |
+
col1, col2 = st.columns(2)
|
| 262 |
|
| 263 |
+
with col1:
|
| 264 |
st.subheader("First Document Analysis")
|
| 265 |
with st.spinner('Processing first document...'):
|
| 266 |
try:
|
|
|
|
| 272 |
st.session_state.analysis_results = st.session_state.analysis_results or {}
|
| 273 |
st.session_state.analysis_results['doc1'] = f"Analysis failed: {str(e)}"
|
| 274 |
|
| 275 |
+
with col2:
|
| 276 |
st.subheader("Second Document Analysis")
|
| 277 |
with st.spinner('Processing second document...'):
|
| 278 |
try:
|
|
|
|
| 284 |
st.session_state.analysis_results = st.session_state.analysis_results or {}
|
| 285 |
st.session_state.analysis_results['doc2'] = f"Analysis failed: {str(e)}"
|
| 286 |
|
|
|
|
| 287 |
if st.session_state.analysis_results:
|
| 288 |
+
col1, col2 = st.columns(2)
|
| 289 |
+
with col1:
|
| 290 |
st.subheader("First Document Analysis")
|
| 291 |
st.success(st.session_state.analysis_results.get('doc1', 'No analysis performed yet'))
|
| 292 |
|
| 293 |
+
with col2:
|
| 294 |
st.subheader("Second Document Analysis")
|
| 295 |
st.success(st.session_state.analysis_results.get('doc2', 'No analysis performed yet'))
|
| 296 |
|
| 297 |
if __name__ == "__main__":
|
| 298 |
+
main()
|