kurt willis commited on
Commit
3f3e190
·
unverified ·
1 Parent(s): 2d3f4dc

rm foo bar

Browse files
Files changed (1) hide show
  1. README.md +5 -5
README.md CHANGED
@@ -46,18 +46,18 @@ We also maintain a copy of the entire dataset with a permanent identifier at Zen
46
  #### Conda environment and dependencies
47
  To run this code out-of-the-box you can install the latest project conda environment stored in `perturbed-environment.yml`
48
  ```console
49
- foo@bar:~$ conda env create -f perturbed-environment.yml
50
  ```
51
  #### segmentation_models_pytorch newest version
52
  We noticed that PyPi package for `segmentation_models_pytorch` is sometimes behind the project's github repository. If you encounter `smp` related problems we reccomend installing directly from the `smp` reposiroty via
53
  ```console
54
- foo@bar:~$ python -m pip install git+https://github.com/qubvel/segmentation_models.pytorch
55
  ```
56
  ### Recreate experiments
57
  The central file for using the **Lens2Logit** framework for experiments as in the paper is `train.py` which provides a rich set of arguments to experiment with raw image data, different image processing models and task models for regression or classification. Below we provide three example prompts for the type of experiments reported in the [paper](https://openreview.net/forum?id=DRAywM1BhU)
58
  #### Controlled synthesis of hardware-drift test cases
59
  ```console
60
- foo@bar:~$ python train.py \
61
  --experiment_name YOUR-EXPERIMENT-NAME \
62
  --run_name YOUR-RUN-NAME \
63
  --dataset Microscopy \
@@ -79,7 +79,7 @@ foo@bar:~$ python train.py \
79
  ```
80
  #### Modular hardware-drift forensics
81
  ```console
82
- foo@bar:~$ python train.py \
83
  --experiment_name YOUR-EXPERIMENT-NAME \
84
  --run_name YOUR-RUN-NAME \
85
  --dataset Microscopy \
@@ -100,7 +100,7 @@ foo@bar:~$ python train.py \
100
  ```
101
  #### Image processing customization
102
  ```console
103
- foo@bar:~$ python train.py \
104
  --experiment_name YOUR-EXPERIMENT-NAME \
105
  --run_name YOUR-RUN-NAME \
106
  --dataset Microscopy \
 
46
  #### Conda environment and dependencies
47
  To run this code out-of-the-box you can install the latest project conda environment stored in `perturbed-environment.yml`
48
  ```console
49
+ $ conda env create -f perturbed-environment.yml
50
  ```
51
  #### segmentation_models_pytorch newest version
52
  We noticed that PyPi package for `segmentation_models_pytorch` is sometimes behind the project's github repository. If you encounter `smp` related problems we reccomend installing directly from the `smp` reposiroty via
53
  ```console
54
+ $ python -m pip install git+https://github.com/qubvel/segmentation_models.pytorch
55
  ```
56
  ### Recreate experiments
57
  The central file for using the **Lens2Logit** framework for experiments as in the paper is `train.py` which provides a rich set of arguments to experiment with raw image data, different image processing models and task models for regression or classification. Below we provide three example prompts for the type of experiments reported in the [paper](https://openreview.net/forum?id=DRAywM1BhU)
58
  #### Controlled synthesis of hardware-drift test cases
59
  ```console
60
+ $ python train.py \
61
  --experiment_name YOUR-EXPERIMENT-NAME \
62
  --run_name YOUR-RUN-NAME \
63
  --dataset Microscopy \
 
79
  ```
80
  #### Modular hardware-drift forensics
81
  ```console
82
+ $ python train.py \
83
  --experiment_name YOUR-EXPERIMENT-NAME \
84
  --run_name YOUR-RUN-NAME \
85
  --dataset Microscopy \
 
100
  ```
101
  #### Image processing customization
102
  ```console
103
+ $ python train.py \
104
  --experiment_name YOUR-EXPERIMENT-NAME \
105
  --run_name YOUR-RUN-NAME \
106
  --dataset Microscopy \