Luis Oala
commited on
Update README.md
Browse files
README.md
CHANGED
@@ -54,6 +54,70 @@ We noticed that PyPi package for `segmentation_models_pytorch` is sometimes behi
|
|
54 |
foo@bar:~$ python -m pip install git+https://github.com/qubvel/segmentation_models.pytorch
|
55 |
```
|
56 |
### Recreate experiments
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
## Virtual lab log
|
58 |
We maintain a collaborative virtual lab log at [this address](http://deplo-mlflo-1ssxo94f973sj-890390d809901dbf.elb.eu-central-1.amazonaws.com/#/). There you can browse experiment runs, analyze results through SQL queries and download trained processing and task models.
|
59 |
<p align="center">
|
|
|
54 |
foo@bar:~$ python -m pip install git+https://github.com/qubvel/segmentation_models.pytorch
|
55 |
```
|
56 |
### Recreate experiments
|
57 |
+
The central file for using the **Lens2Logit** framework for experiments as in the paper is `train.py` which provides a rich set of arguments to experiment with raw image data, different image processing models and task models for regression or classification. Below we provide three example prompts for the type of experiments reported in the [paper](https://openreview.net/forum?id=DRAywM1BhU)
|
58 |
+
#### Controlled synthesis of hardware-drift test cases
|
59 |
+
```console
|
60 |
+
foo@bar:~$ python train.py \
|
61 |
+
--experiment_name YOUR-EXPERIMENT-NAME \
|
62 |
+
--run_name YOUR-RUN-NAME \
|
63 |
+
--dataset Microscopy \
|
64 |
+
--lr 1e-5 \
|
65 |
+
--n_splits 5 \
|
66 |
+
--epochs 5 \
|
67 |
+
--classifier_pretrained \
|
68 |
+
--processing_mode static \
|
69 |
+
--augmentation weak \
|
70 |
+
--log_model True \
|
71 |
+
--iso 0.01 \
|
72 |
+
--freeze_processor \
|
73 |
+
--processor_uri "$processor_uri" \
|
74 |
+
--track_processing \
|
75 |
+
--track_every_epoch \
|
76 |
+
--track_predictions \
|
77 |
+
--track_processing_gradients \
|
78 |
+
--track_save_tensors \
|
79 |
+
```
|
80 |
+
#### Modular hardware-drift forensics
|
81 |
+
```console
|
82 |
+
foo@bar:~$ python train.py \
|
83 |
+
--experiment_name YOUR-EXPERIMENT-NAME \
|
84 |
+
--run_name YOUR-RUN-NAME \
|
85 |
+
--dataset Microscopy \
|
86 |
+
--adv_training
|
87 |
+
--lr 1e-5 \
|
88 |
+
--n_splits 5 \
|
89 |
+
--epochs 5 \
|
90 |
+
--classifier_pretrained \
|
91 |
+
--processing_mode parametrized \
|
92 |
+
--augmentation weak \
|
93 |
+
--log_model True \
|
94 |
+
--iso 0.01 \
|
95 |
+
--track_processing \
|
96 |
+
--track_every_epoch \
|
97 |
+
--track_predictions \
|
98 |
+
--track_processing_gradients \
|
99 |
+
--track_save_tensors \
|
100 |
+
```
|
101 |
+
#### Image processing customization
|
102 |
+
```console
|
103 |
+
foo@bar:~$ python train.py \
|
104 |
+
--experiment_name YOUR-EXPERIMENT-NAME \
|
105 |
+
--run_name YOUR-RUN-NAME \
|
106 |
+
--dataset Microscopy \
|
107 |
+
--lr 1e-5 \
|
108 |
+
--n_splits 5 \
|
109 |
+
--epochs 5 \
|
110 |
+
--classifier_pretrained \
|
111 |
+
--processing_mode parametrized \
|
112 |
+
--augmentation weak \
|
113 |
+
--log_model True \
|
114 |
+
--iso 0.01 \
|
115 |
+
--track_processing \
|
116 |
+
--track_every_epoch \
|
117 |
+
--track_predictions \
|
118 |
+
--track_processing_gradients \
|
119 |
+
--track_save_tensors \
|
120 |
+
```
|
121 |
## Virtual lab log
|
122 |
We maintain a collaborative virtual lab log at [this address](http://deplo-mlflo-1ssxo94f973sj-890390d809901dbf.elb.eu-central-1.amazonaws.com/#/). There you can browse experiment runs, analyze results through SQL queries and download trained processing and task models.
|
123 |
<p align="center">
|