Update app.py
Browse files
app.py
CHANGED
|
@@ -1,7 +1,8 @@
|
|
| 1 |
import os
|
| 2 |
-
from
|
|
|
|
| 3 |
from pydantic import BaseModel
|
| 4 |
-
from typing import
|
| 5 |
import torch
|
| 6 |
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor
|
| 7 |
from qwen_vl_utils import process_vision_info
|
|
@@ -9,50 +10,66 @@ from byaldi import RAGMultiModalModel
|
|
| 9 |
from PIL import Image
|
| 10 |
import io
|
| 11 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
# Initialize FastAPI app
|
| 13 |
app = FastAPI()
|
| 14 |
|
| 15 |
-
# Define model and processor paths
|
| 16 |
-
RAG_MODEL = "vidore/colpali"
|
| 17 |
-
QWN_MODEL = "Qwen/Qwen2-VL-7B-Instruct"
|
| 18 |
-
QWN_PROCESSOR = "Qwen/Qwen2-VL-2B-Instruct"
|
| 19 |
-
|
| 20 |
# Load models and processors
|
| 21 |
-
RAG = RAGMultiModalModel.from_pretrained(RAG_MODEL)
|
| 22 |
|
| 23 |
-
|
| 24 |
QWN_MODEL,
|
| 25 |
torch_dtype=torch.bfloat16,
|
| 26 |
attn_implementation="flash_attention_2",
|
| 27 |
device_map="auto",
|
| 28 |
-
trust_remote_code=True
|
|
|
|
| 29 |
).cuda().eval()
|
| 30 |
|
| 31 |
-
|
| 32 |
|
| 33 |
# Define request model
|
| 34 |
class DocumentRequest(BaseModel):
|
| 35 |
text_query: str
|
| 36 |
|
| 37 |
-
# Define processing
|
| 38 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
messages = [
|
| 40 |
{
|
| 41 |
"role": "user",
|
| 42 |
"content": [
|
|
|
|
|
|
|
|
|
|
|
|
|
| 43 |
{
|
| 44 |
"type": "image",
|
| 45 |
"image": image,
|
| 46 |
},
|
| 47 |
-
{"type": "text", "text": text_query},
|
| 48 |
],
|
| 49 |
}
|
| 50 |
]
|
| 51 |
-
text =
|
| 52 |
messages, tokenize=False, add_generation_prompt=True
|
| 53 |
)
|
| 54 |
image_inputs, video_inputs = process_vision_info(messages)
|
| 55 |
-
inputs =
|
| 56 |
text=[text],
|
| 57 |
images=image_inputs,
|
| 58 |
videos=video_inputs,
|
|
@@ -60,26 +77,36 @@ def document_rag(text_query, image):
|
|
| 60 |
return_tensors="pt",
|
| 61 |
)
|
| 62 |
inputs = inputs.to("cuda")
|
| 63 |
-
generated_ids =
|
| 64 |
generated_ids_trimmed = [
|
| 65 |
out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
|
| 66 |
]
|
| 67 |
-
output_text =
|
| 68 |
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
| 69 |
)
|
| 70 |
return output_text[0]
|
| 71 |
|
| 72 |
-
# Define API
|
| 73 |
@app.post("/process_document")
|
| 74 |
-
async def process_document(request: DocumentRequest, file: UploadFile = File(...)):
|
|
|
|
|
|
|
|
|
|
|
|
|
| 75 |
# Read and process the uploaded file
|
| 76 |
contents = await file.read()
|
| 77 |
image = Image.open(io.BytesIO(contents))
|
| 78 |
|
| 79 |
-
#
|
| 80 |
-
|
|
|
|
|
|
|
|
|
|
| 81 |
|
| 82 |
-
return {
|
|
|
|
|
|
|
|
|
|
| 83 |
|
| 84 |
if __name__ == "__main__":
|
| 85 |
import uvicorn
|
|
|
|
| 1 |
import os
|
| 2 |
+
from dotenv import load_dotenv
|
| 3 |
+
from fastapi import FastAPI, File, UploadFile, HTTPException, Header
|
| 4 |
from pydantic import BaseModel
|
| 5 |
+
from typing import Optional
|
| 6 |
import torch
|
| 7 |
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor
|
| 8 |
from qwen_vl_utils import process_vision_info
|
|
|
|
| 10 |
from PIL import Image
|
| 11 |
import io
|
| 12 |
|
| 13 |
+
# Load environment variables
|
| 14 |
+
load_dotenv()
|
| 15 |
+
|
| 16 |
+
# Access environment variables
|
| 17 |
+
HF_TOKEN = os.getenv("HF_TOKEN")
|
| 18 |
+
RAG_MODEL = os.getenv("RAG_MODEL", "vidore/colpali")
|
| 19 |
+
QWN_MODEL = os.getenv("QWN_MODEL", "Qwen/Qwen2-VL-7B-Instruct")
|
| 20 |
+
QWN_PROCESSOR = os.getenv("QWN_PROCESSOR", "Qwen/Qwen2-VL-2B-Instruct")
|
| 21 |
+
|
| 22 |
+
if not HF_TOKEN:
|
| 23 |
+
raise ValueError("HF_TOKEN not found in .env file")
|
| 24 |
+
|
| 25 |
# Initialize FastAPI app
|
| 26 |
app = FastAPI()
|
| 27 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
# Load models and processors
|
| 29 |
+
RAG = RAGMultiModalModel.from_pretrained(RAG_MODEL, use_auth_token=HF_TOKEN)
|
| 30 |
|
| 31 |
+
qwen_model = Qwen2VLForConditionalGeneration.from_pretrained(
|
| 32 |
QWN_MODEL,
|
| 33 |
torch_dtype=torch.bfloat16,
|
| 34 |
attn_implementation="flash_attention_2",
|
| 35 |
device_map="auto",
|
| 36 |
+
trust_remote_code=True,
|
| 37 |
+
use_auth_token=HF_TOKEN
|
| 38 |
).cuda().eval()
|
| 39 |
|
| 40 |
+
qwen_processor = AutoProcessor.from_pretrained(QWN_PROCESSOR, trust_remote_code=True, use_auth_token=HF_TOKEN)
|
| 41 |
|
| 42 |
# Define request model
|
| 43 |
class DocumentRequest(BaseModel):
|
| 44 |
text_query: str
|
| 45 |
|
| 46 |
+
# Define processing functions
|
| 47 |
+
def extract_text_with_colpali(image):
|
| 48 |
+
# Use ColPali (RAG) to extract text from the image
|
| 49 |
+
extracted_text = RAG.extract_text(image) # Assuming this method exists
|
| 50 |
+
return extracted_text
|
| 51 |
+
|
| 52 |
+
def process_with_qwen(query, extracted_text, image):
|
| 53 |
messages = [
|
| 54 |
{
|
| 55 |
"role": "user",
|
| 56 |
"content": [
|
| 57 |
+
{
|
| 58 |
+
"type": "text",
|
| 59 |
+
"text": f"Context: {extracted_text}\n\nQuery: {query}"
|
| 60 |
+
},
|
| 61 |
{
|
| 62 |
"type": "image",
|
| 63 |
"image": image,
|
| 64 |
},
|
|
|
|
| 65 |
],
|
| 66 |
}
|
| 67 |
]
|
| 68 |
+
text = qwen_processor.apply_chat_template(
|
| 69 |
messages, tokenize=False, add_generation_prompt=True
|
| 70 |
)
|
| 71 |
image_inputs, video_inputs = process_vision_info(messages)
|
| 72 |
+
inputs = qwen_processor(
|
| 73 |
text=[text],
|
| 74 |
images=image_inputs,
|
| 75 |
videos=video_inputs,
|
|
|
|
| 77 |
return_tensors="pt",
|
| 78 |
)
|
| 79 |
inputs = inputs.to("cuda")
|
| 80 |
+
generated_ids = qwen_model.generate(**inputs, max_new_tokens=100)
|
| 81 |
generated_ids_trimmed = [
|
| 82 |
out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
|
| 83 |
]
|
| 84 |
+
output_text = qwen_processor.batch_decode(
|
| 85 |
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
| 86 |
)
|
| 87 |
return output_text[0]
|
| 88 |
|
| 89 |
+
# Define API endpoint
|
| 90 |
@app.post("/process_document")
|
| 91 |
+
async def process_document(request: DocumentRequest, file: UploadFile = File(...), x_api_key: Optional[str] = Header(None)):
|
| 92 |
+
# Check API key
|
| 93 |
+
if x_api_key != HF_TOKEN:
|
| 94 |
+
raise HTTPException(status_code=403, detail="Invalid API key")
|
| 95 |
+
|
| 96 |
# Read and process the uploaded file
|
| 97 |
contents = await file.read()
|
| 98 |
image = Image.open(io.BytesIO(contents))
|
| 99 |
|
| 100 |
+
# Extract text using ColPali
|
| 101 |
+
extracted_text = extract_text_with_colpali(image)
|
| 102 |
+
|
| 103 |
+
# Process the query with Qwen2, using both extracted text and image
|
| 104 |
+
result = process_with_qwen(request.text_query, extracted_text, image)
|
| 105 |
|
| 106 |
+
return {
|
| 107 |
+
"extracted_text": extracted_text,
|
| 108 |
+
"qwen_response": result
|
| 109 |
+
}
|
| 110 |
|
| 111 |
if __name__ == "__main__":
|
| 112 |
import uvicorn
|