Spaces:
No application file
No application file
File size: 19,678 Bytes
978e754 22d942d ef506ec fa5ff08 ef506ec 978e754 ef506ec 22d942d 0602916 22d942d 0602916 22d942d 0602916 22d942d ef506ec 22d942d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 |
# Copyright 2022 Lunar Ring. All rights reserved.
# Written by Johannes Stelzer, email [email protected] twitter @j_stelzer
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os, sys
sys.path.append("/content/latentblending/")
from movie_util import MovieSaver, concatenate_movies
from huggingface_hub import hf_hub_download
hf_hub_download(repo_id="stabilityai/stable-diffusion-2-1-base", filename="v2-1_512-ema-pruned.ckpt")
import torch
torch.backends.cudnn.benchmark = False
import numpy as np
import warnings
warnings.filterwarnings('ignore')
import warnings
import torch
from tqdm.auto import tqdm
from PIL import Image
import torch
from typing import Callable, List, Optional, Union
from latent_blending import get_time, yml_save, LatentBlending, add_frames_linear_interp, compare_dicts
from stable_diffusion_holder import StableDiffusionHolder
torch.set_grad_enabled(False)
import gradio as gr
import copy
from dotenv import find_dotenv, load_dotenv
import shutil
"""
never hit compute trans -> multi movie add fail
"""
#%%
class BlendingFrontend():
def __init__(self, sdh=None):
self.num_inference_steps = 30
if sdh is None:
self.use_debug = True
self.height = 768
self.width = 768
else:
self.use_debug = False
self.lb = LatentBlending(sdh)
self.lb.sdh.num_inference_steps = self.num_inference_steps
self.height = self.lb.sdh.height
self.width = self.lb.sdh.width
self.init_save_dir()
self.save_empty_image()
self.share = True
self.transition_can_be_computed = False
self.depth_strength = 0.25
self.seed1 = 420
self.seed2 = 420
self.guidance_scale = 4.0
self.guidance_scale_mid_damper = 0.5
self.mid_compression_scaler = 1.2
self.prompt1 = ""
self.prompt2 = ""
self.negative_prompt = ""
self.state_current = {}
self.branch1_crossfeed_power = self.lb.branch1_crossfeed_power
self.branch1_crossfeed_range = self.lb.branch1_crossfeed_range
self.branch1_crossfeed_decay = self.lb.branch1_crossfeed_decay
self.parental_crossfeed_power = self.lb.parental_crossfeed_power
self.parental_crossfeed_range = self.lb.parental_crossfeed_range
self.parental_crossfeed_power_decay = self.lb.parental_crossfeed_power_decay
self.fps = 30
self.duration_video = 10
self.t_compute_max_allowed = 10
self.list_fp_imgs_current = []
self.current_timestamp = None
self.recycle_img1 = False
self.recycle_img2 = False
self.fp_img1 = None
self.fp_img2 = None
self.multi_idx_current = -1
self.list_imgs_shown_last = 5*[self.fp_img_empty]
self.list_all_segments = []
self.dp_session = ""
def init_save_dir(self):
load_dotenv(find_dotenv(), verbose=False)
self.dp_out = os.getenv("DIR_OUT")
if self.dp_out is None:
self.dp_out = ""
self.dp_imgs = os.path.join(self.dp_out, "imgs")
os.makedirs(self.dp_imgs, exist_ok=True)
self.dp_movies = os.path.join(self.dp_out, "movies")
os.makedirs(self.dp_movies, exist_ok=True)
# make dummy image
def save_empty_image(self):
self.fp_img_empty = os.path.join(self.dp_imgs, 'empty.jpg')
Image.fromarray(np.zeros((self.height, self.width, 3), dtype=np.uint8)).save(self.fp_img_empty, quality=5)
def randomize_seed1(self):
# Dont randomize seed if we are in a multi concat mode. we don't want to change this one otherwise the movie breaks
if len(self.list_all_segments) > 0:
seed = self.seed1
else:
seed = np.random.randint(0, 10000000)
self.seed1 = int(seed)
print(f"randomize_seed1: new seed = {self.seed1}")
return seed
def randomize_seed2(self):
seed = np.random.randint(0, 10000000)
self.seed2 = int(seed)
print(f"randomize_seed2: new seed = {self.seed2}")
return seed
def setup_lb(self, list_ui_elem):
# Collect latent blending variables
self.state_current = self.get_state_dict()
self.lb.set_width(list_ui_elem[list_ui_keys.index('width')])
self.lb.set_height(list_ui_elem[list_ui_keys.index('height')])
self.lb.set_prompt1(list_ui_elem[list_ui_keys.index('prompt1')])
self.lb.set_prompt2(list_ui_elem[list_ui_keys.index('prompt2')])
self.lb.set_negative_prompt(list_ui_elem[list_ui_keys.index('negative_prompt')])
self.lb.guidance_scale = list_ui_elem[list_ui_keys.index('guidance_scale')]
self.lb.guidance_scale_mid_damper = list_ui_elem[list_ui_keys.index('guidance_scale_mid_damper')]
self.t_compute_max_allowed = list_ui_elem[list_ui_keys.index('duration_compute')]
self.lb.num_inference_steps = list_ui_elem[list_ui_keys.index('num_inference_steps')]
self.lb.sdh.num_inference_steps = list_ui_elem[list_ui_keys.index('num_inference_steps')]
self.duration_video = list_ui_elem[list_ui_keys.index('duration_video')]
self.lb.seed1 = list_ui_elem[list_ui_keys.index('seed1')] #seed
self.lb.seed2 = list_ui_elem[list_ui_keys.index('seed2')]
self.lb.branch1_crossfeed_power = list_ui_elem[list_ui_keys.index('branch1_crossfeed_power')]
self.lb.branch1_crossfeed_range = list_ui_elem[list_ui_keys.index('branch1_crossfeed_range')]
self.lb.branch1_crossfeed_decay = list_ui_elem[list_ui_keys.index('branch1_crossfeed_decay')]
self.lb.parental_crossfeed_power = list_ui_elem[list_ui_keys.index('parental_crossfeed_power')]
self.lb.parental_crossfeed_range = list_ui_elem[list_ui_keys.index('parental_crossfeed_range')]
self.lb.parental_crossfeed_power_decay = list_ui_elem[list_ui_keys.index('parental_crossfeed_power_decay')]
self.num_inference_steps = list_ui_elem[list_ui_keys.index('num_inference_steps')]
self.depth_strength = list_ui_elem[list_ui_keys.index('depth_strength')]
def compute_img1(self, *args):
list_ui_elem = args
self.setup_lb(list_ui_elem)
self.fp_img1 = os.path.join(self.dp_imgs, f"img1_{get_time('second')}.jpg")
img1 = Image.fromarray(self.lb.compute_latents1(return_image=True))
img1.save(self.fp_img1)
self.recycle_img1 = True
self.recycle_img2 = False
return [self.fp_img1, self.fp_img_empty, self.fp_img_empty, self.fp_img_empty, self.fp_img_empty]
def compute_img2(self, *args):
if self.fp_img1 is None: # don't do anything
return [self.fp_img_empty, self.fp_img_empty, self.fp_img_empty, self.fp_img_empty]
list_ui_elem = args
self.setup_lb(list_ui_elem)
self.fp_img2 = os.path.join(self.dp_imgs, f"img2_{get_time('second')}.jpg")
img2 = Image.fromarray(self.lb.compute_latents2(return_image=True))
img2.save(self.fp_img2)
self.recycle_img2 = True
self.transition_can_be_computed = True
return [self.fp_img_empty, self.fp_img_empty, self.fp_img_empty, self.fp_img2]
def compute_transition(self, *args):
if not self.transition_can_be_computed:
list_return = [self.fp_img_empty, self.fp_img_empty, self.fp_img_empty, self.fp_img_empty]
return list_return
list_ui_elem = args
self.setup_lb(list_ui_elem)
print("STARTING TRANSITION...")
if self.use_debug:
list_imgs = [(255*np.random.rand(self.height,self.width,3)).astype(np.uint8) for l in range(5)]
list_imgs = [Image.fromarray(l) for l in list_imgs]
print("DONE! SENDING BACK RESULTS")
return list_imgs
fixed_seeds = [self.seed1, self.seed2]
# Run Latent Blending
imgs_transition = self.lb.run_transition(
recycle_img1=self.recycle_img1,
recycle_img2=self.recycle_img2,
num_inference_steps=self.num_inference_steps,
depth_strength=self.depth_strength,
t_compute_max_allowed=self.t_compute_max_allowed,
fixed_seeds=fixed_seeds
)
print(f"Latent Blending pass finished. Resulted in {len(imgs_transition)} images")
# Subselect three preview images
idx_img_prev = np.round(np.linspace(0, len(imgs_transition)-1, 5)[1:-1]).astype(np.int32)
list_imgs_preview = []
for j in idx_img_prev:
list_imgs_preview.append(Image.fromarray(imgs_transition[j]))
# Save the preview imgs as jpgs on disk so we are not sending umcompressed data around
self.current_timestamp = get_time('second')
self.list_fp_imgs_current = []
for i in range(len(list_imgs_preview)):
fp_img = os.path.join(self.dp_imgs, f"img_preview_{i}_{self.current_timestamp}.jpg")
list_imgs_preview[i].save(fp_img)
self.list_fp_imgs_current.append(fp_img)
# Insert cheap frames for the movie
imgs_transition_ext = add_frames_linear_interp(imgs_transition, self.duration_video, self.fps)
# Save as movie
self.fp_movie = os.path.join(self.dp_movies, f"movie_{self.current_timestamp}.mp4")
if os.path.isfile(self.fp_movie):
os.remove(self.fp_movie)
ms = MovieSaver(self.fp_movie, fps=self.fps)
for img in tqdm(imgs_transition_ext):
ms.write_frame(img)
ms.finalize()
print("DONE SAVING MOVIE! SENDING BACK...")
# Assemble Output, updating the preview images and le movie
list_return = self.list_fp_imgs_current + [self.fp_movie]
return list_return
def stack_forward(self, prompt2, seed2):
# Save preview images, prompts and seeds into dictionary for stacking
if len(self.list_all_segments) == 0:
timestamp_session = get_time('second')
self.dp_session = os.path.join(self.dp_out, f"session_{timestamp_session}")
os.makedirs(self.dp_session)
self.transition_can_be_computed = False
idx_segment = len(self.list_all_segments)
dp_segment = os.path.join(self.dp_session, f"segment_{str(idx_segment).zfill(3)}")
self.list_all_segments.append(dp_segment)
self.lb.write_imgs_transition(dp_segment)
shutil.copyfile(self.fp_movie, os.path.join(dp_segment, "movie.mp4"))
self.lb.swap_forward()
fp_multi = self.multi_concat()
list_out = [fp_multi]
list_out.extend([self.fp_img2])
list_out.extend([self.fp_img_empty]*4)
list_out.append(gr.update(interactive=False, value=prompt2))
list_out.append(gr.update(interactive=False, value=seed2))
list_out.append("")
list_out.append(np.random.randint(0, 10000000))
print(f"stack_forward: fp_multi {fp_multi}")
return list_out
def multi_concat(self):
list_fp_movies = []
for dp_segment in self.list_all_segments:
list_fp_movies.append(os.path.join(dp_segment, "movie.mp4"))
# Concatenate movies and save
fp_final = os.path.join(self.dp_session, "movie.mp4")
concatenate_movies(fp_final, list_fp_movies)
return fp_final
def get_state_dict(self):
state_dict = {}
grab_vars = ['prompt1', 'prompt2', 'seed1', 'seed2', 'height', 'width',
'num_inference_steps', 'depth_strength', 'guidance_scale',
'guidance_scale_mid_damper', 'mid_compression_scaler']
for v in grab_vars:
state_dict[v] = getattr(self, v)
return state_dict
if __name__ == "__main__":
# fp_ckpt = "../stable_diffusion_models/ckpt/v2-1_768-ema-pruned.ckpt"
fp_ckpt = "v2-1_512-ema-pruned.ckpt"
bf = BlendingFrontend(StableDiffusionHolder(fp_ckpt))
# self = BlendingFrontend(None)
with gr.Blocks() as demo:
with gr.Tab("Single Transition"):
with gr.Row():
prompt1 = gr.Textbox(label="prompt 1")
prompt2 = gr.Textbox(label="prompt 2")
with gr.Row():
duration_compute = gr.Slider(5, 200, bf.t_compute_max_allowed, step=1, label='compute budget for transition (seconds)', interactive=True)
duration_video = gr.Slider(1, 100, bf.duration_video, step=0.1, label='result video duration (seconds)', interactive=True)
height = gr.Slider(256, 2048, bf.height, step=128, label='height', interactive=True)
width = gr.Slider(256, 2048, bf.width, step=128, label='width', interactive=True)
with gr.Accordion("Advanced Settings (click to expand)", open=False):
with gr.Accordion("Diffusion settings", open=True):
with gr.Row():
num_inference_steps = gr.Slider(5, 100, bf.num_inference_steps, step=1, label='num_inference_steps', interactive=True)
guidance_scale = gr.Slider(1, 25, bf.guidance_scale, step=0.1, label='guidance_scale', interactive=True)
negative_prompt = gr.Textbox(label="negative prompt")
with gr.Accordion("Seed control: adjust seeds for first and last images", open=True):
with gr.Row():
b_newseed1 = gr.Button("randomize seed 1", variant='secondary')
seed1 = gr.Number(bf.seed1, label="seed 1", interactive=True)
seed2 = gr.Number(bf.seed2, label="seed 2", interactive=True)
b_newseed2 = gr.Button("randomize seed 2", variant='secondary')
with gr.Accordion("Last image crossfeeding.", open=True):
with gr.Row():
branch1_crossfeed_power = gr.Slider(0.0, 1.0, bf.branch1_crossfeed_power, step=0.01, label='branch1 crossfeed power', interactive=True)
branch1_crossfeed_range = gr.Slider(0.0, 1.0, bf.branch1_crossfeed_range, step=0.01, label='branch1 crossfeed range', interactive=True)
branch1_crossfeed_decay = gr.Slider(0.0, 1.0, bf.branch1_crossfeed_decay, step=0.01, label='branch1 crossfeed decay', interactive=True)
with gr.Accordion("Transition settings", open=True):
with gr.Row():
parental_crossfeed_power = gr.Slider(0.0, 1.0, bf.parental_crossfeed_power, step=0.01, label='parental crossfeed power', interactive=True)
parental_crossfeed_range = gr.Slider(0.0, 1.0, bf.parental_crossfeed_range, step=0.01, label='parental crossfeed range', interactive=True)
parental_crossfeed_power_decay = gr.Slider(0.0, 1.0, bf.parental_crossfeed_power_decay, step=0.01, label='parental crossfeed decay', interactive=True)
with gr.Row():
depth_strength = gr.Slider(0.01, 0.99, bf.depth_strength, step=0.01, label='depth_strength', interactive=True)
guidance_scale_mid_damper = gr.Slider(0.01, 2.0, bf.guidance_scale_mid_damper, step=0.01, label='guidance_scale_mid_damper', interactive=True)
with gr.Row():
b_compute1 = gr.Button('compute first image', variant='primary')
b_compute_transition = gr.Button('compute transition', variant='primary')
b_compute2 = gr.Button('compute last image', variant='primary')
with gr.Row():
img1 = gr.Image(label="1/5")
img2 = gr.Image(label="2/5", show_progress=False)
img3 = gr.Image(label="3/5", show_progress=False)
img4 = gr.Image(label="4/5", show_progress=False)
img5 = gr.Image(label="5/5")
with gr.Row():
vid_single = gr.Video(label="single trans")
vid_multi = gr.Video(label="multi trans")
with gr.Row():
# b_restart = gr.Button("RESTART EVERYTHING")
b_stackforward = gr.Button('append last movie segment (left) to multi movie (right)', variant='primary')
# Collect all UI elemts in list to easily pass as inputs in gradio
dict_ui_elem = {}
dict_ui_elem["prompt1"] = prompt1
dict_ui_elem["negative_prompt"] = negative_prompt
dict_ui_elem["prompt2"] = prompt2
dict_ui_elem["duration_compute"] = duration_compute
dict_ui_elem["duration_video"] = duration_video
dict_ui_elem["height"] = height
dict_ui_elem["width"] = width
dict_ui_elem["depth_strength"] = depth_strength
dict_ui_elem["branch1_crossfeed_power"] = branch1_crossfeed_power
dict_ui_elem["branch1_crossfeed_range"] = branch1_crossfeed_range
dict_ui_elem["branch1_crossfeed_decay"] = branch1_crossfeed_decay
dict_ui_elem["num_inference_steps"] = num_inference_steps
dict_ui_elem["guidance_scale"] = guidance_scale
dict_ui_elem["guidance_scale_mid_damper"] = guidance_scale_mid_damper
dict_ui_elem["seed1"] = seed1
dict_ui_elem["seed2"] = seed2
dict_ui_elem["parental_crossfeed_range"] = parental_crossfeed_range
dict_ui_elem["parental_crossfeed_power"] = parental_crossfeed_power
dict_ui_elem["parental_crossfeed_power_decay"] = parental_crossfeed_power_decay
# Convert to list, as gradio doesn't seem to accept dicts
list_ui_elem = []
list_ui_keys = []
for k in dict_ui_elem.keys():
list_ui_elem.append(dict_ui_elem[k])
list_ui_keys.append(k)
bf.list_ui_keys = list_ui_keys
b_newseed1.click(bf.randomize_seed1, outputs=seed1)
b_newseed2.click(bf.randomize_seed2, outputs=seed2)
b_compute1.click(bf.compute_img1, inputs=list_ui_elem, outputs=[img1, img2, img3, img4, img5])
b_compute2.click(bf.compute_img2, inputs=list_ui_elem, outputs=[img2, img3, img4, img5])
b_compute_transition.click(bf.compute_transition,
inputs=list_ui_elem,
outputs=[img2, img3, img4, vid_single])
b_stackforward.click(bf.stack_forward,
inputs=[prompt2, seed2],
outputs=[vid_multi, img1, img2, img3, img4, img5, prompt1, seed1, prompt2])
demo.launch(share=bf.share, inbrowser=True, inline=False)
|