Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import pandas as pd
|
3 |
+
from transformers import BertForSequenceClassification, Trainer, TrainingArguments, BertTokenizer
|
4 |
+
from datasets import Dataset
|
5 |
+
from huggingface_hub import HfApi
|
6 |
+
|
7 |
+
class CSVTrainer:
|
8 |
+
def __init__(self):
|
9 |
+
self.csv_files = []
|
10 |
+
self.model_dir = "./Personal"
|
11 |
+
self.repo_id = "luohoa97/PersonalBot-o"
|
12 |
+
|
13 |
+
def upload_and_train(self, csv_files):
|
14 |
+
if not csv_files:
|
15 |
+
return "Please upload at least one CSV file."
|
16 |
+
|
17 |
+
dataframes = [pd.read_csv(file.name) for file in csv_files]
|
18 |
+
combined_df = pd.concat(dataframes, ignore_index=True)
|
19 |
+
|
20 |
+
combined_df['text'] = combined_df.apply(lambda row: f"{row['Event']} in {row['Location']} on {row['Date']}, {row['Time']}", axis=1)
|
21 |
+
combined_df['labels'] = pd.factorize(combined_df['Category'])[0]
|
22 |
+
|
23 |
+
dataset = Dataset.from_pandas(combined_df[['text', 'labels']])
|
24 |
+
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
|
25 |
+
|
26 |
+
def tokenize_function(examples):
|
27 |
+
return tokenizer(examples['text'], padding='max_length', truncation=True)
|
28 |
+
|
29 |
+
tokenized_datasets = dataset.map(tokenize_function, batched=True)
|
30 |
+
tokenized_datasets.set_format("torch", columns=['input_ids', 'attention_mask', 'labels'])
|
31 |
+
|
32 |
+
model = BertForSequenceClassification.from_pretrained('bert-base-uncased', num_labels=len(combined_df['labels'].unique()))
|
33 |
+
|
34 |
+
training_args = TrainingArguments(
|
35 |
+
output_dir='./results',
|
36 |
+
num_train_epochs=3,
|
37 |
+
per_device_train_batch_size=16,
|
38 |
+
per_device_eval_batch_size=64,
|
39 |
+
warmup_steps=500,
|
40 |
+
weight_decay=0.01,
|
41 |
+
logging_dir='./logs',
|
42 |
+
logging_steps=10,
|
43 |
+
evaluation_strategy="epoch",
|
44 |
+
save_strategy="epoch"
|
45 |
+
)
|
46 |
+
|
47 |
+
trainer = Trainer(
|
48 |
+
model=model,
|
49 |
+
args=training_args,
|
50 |
+
train_dataset=tokenized_datasets,
|
51 |
+
eval_dataset=tokenized_datasets
|
52 |
+
)
|
53 |
+
|
54 |
+
trainer.train()
|
55 |
+
model.save_pretrained(self.model_dir)
|
56 |
+
self.upload_to_huggingface()
|
57 |
+
|
58 |
+
return "Model uploaded to Hugging Face successfully!"
|
59 |
+
|
60 |
+
def upload_to_huggingface(self):
|
61 |
+
api = HfApi()
|
62 |
+
try:
|
63 |
+
api.create_repo(repo_id=self.repo_id)
|
64 |
+
except Exception as e:
|
65 |
+
print(f"Repo creation failed: {e}")
|
66 |
+
model = BertForSequenceClassification.from_pretrained(self.model_dir)
|
67 |
+
model.push_to_hub(self.repo_id)
|
68 |
+
|
69 |
+
trainer = CSVTrainer()
|
70 |
+
|
71 |
+
def gradio_interface(file):
|
72 |
+
return trainer.upload_and_train(file)
|
73 |
+
|
74 |
+
iface = gr.Interface(
|
75 |
+
fn=gradio_interface,
|
76 |
+
inputs=gr.inputs.File(label="Upload CSV Files", type="file", multiple=True),
|
77 |
+
outputs="text",
|
78 |
+
title="CSV Trainer",
|
79 |
+
description="Upload CSV files for training a BERT model."
|
80 |
+
)
|
81 |
+
|
82 |
+
iface.launch()
|