import gradio as gr import pandas as pd from transformers import BertForSequenceClassification, Trainer, TrainingArguments, BertTokenizer from datasets import Dataset from huggingface_hub import HfApi class CSVTrainer: def __init__(self): self.csv_files = [] self.model_dir = "./Personal" self.repo_id = "luohoa97/PersonalBot-o" def upload_and_train(self, csv_files): if not csv_files: return "Please upload at least one CSV file." dataframes = [pd.read_csv(file.name) for file in csv_files] combined_df = pd.concat(dataframes, ignore_index=True) combined_df['text'] = combined_df.apply(lambda row: f"{row['Event']} in {row['Location']} on {row['Date']}, {row['Time']}", axis=1) combined_df['labels'] = pd.factorize(combined_df['Category'])[0] dataset = Dataset.from_pandas(combined_df[['text', 'labels']]) tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') def tokenize_function(examples): return tokenizer(examples['text'], padding='max_length', truncation=True) tokenized_datasets = dataset.map(tokenize_function, batched=True) tokenized_datasets.set_format("torch", columns=['input_ids', 'attention_mask', 'labels']) model = BertForSequenceClassification.from_pretrained('bert-base-uncased', num_labels=len(combined_df['labels'].unique())) training_args = TrainingArguments( output_dir='./results', num_train_epochs=3, per_device_train_batch_size=16, per_device_eval_batch_size=64, warmup_steps=500, weight_decay=0.01, logging_dir='./logs', logging_steps=10, evaluation_strategy="epoch", save_strategy="epoch" ) trainer = Trainer( model=model, args=training_args, train_dataset=tokenized_datasets, eval_dataset=tokenized_datasets ) trainer.train() model.save_pretrained(self.model_dir) self.upload_to_huggingface() return "Model uploaded to Hugging Face successfully!" def upload_to_huggingface(self): api = HfApi() try: api.create_repo(repo_id=self.repo_id) except Exception as e: print(f"Repo creation failed: {e}") model = BertForSequenceClassification.from_pretrained(self.model_dir) model.push_to_hub(self.repo_id) trainer = CSVTrainer() def gradio_interface(file): return trainer.upload_and_train(file) iface = gr.Interface( fn=gradio_interface, inputs=gr.inputs.File(label="Upload CSV Files", type="file", multiple=True), outputs="text", title="CSV Trainer", description="Upload CSV files for training a BERT model." ) iface.launch()