Spaces:
Runtime error
Runtime error
| """ | |
| This file is part of ComfyUI. | |
| Copyright (C) 2024 Stability AI | |
| This program is free software: you can redistribute it and/or modify | |
| it under the terms of the GNU General Public License as published by | |
| the Free Software Foundation, either version 3 of the License, or | |
| (at your option) any later version. | |
| This program is distributed in the hope that it will be useful, | |
| but WITHOUT ANY WARRANTY; without even the implied warranty of | |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
| GNU General Public License for more details. | |
| You should have received a copy of the GNU General Public License | |
| along with this program. If not, see <https://www.gnu.org/licenses/>. | |
| """ | |
| import torch | |
| import nodes | |
| import comfy.utils | |
| class StableCascade_EmptyLatentImage: | |
| def __init__(self, device="cpu"): | |
| self.device = device | |
| def INPUT_TYPES(s): | |
| return {"required": { | |
| "width": ("INT", {"default": 1024, "min": 256, "max": nodes.MAX_RESOLUTION, "step": 8}), | |
| "height": ("INT", {"default": 1024, "min": 256, "max": nodes.MAX_RESOLUTION, "step": 8}), | |
| "compression": ("INT", {"default": 42, "min": 4, "max": 128, "step": 1}), | |
| "batch_size": ("INT", {"default": 1, "min": 1, "max": 4096}) | |
| }} | |
| RETURN_TYPES = ("LATENT", "LATENT") | |
| RETURN_NAMES = ("stage_c", "stage_b") | |
| FUNCTION = "generate" | |
| CATEGORY = "latent/stable_cascade" | |
| def generate(self, width, height, compression, batch_size=1): | |
| c_latent = torch.zeros([batch_size, 16, height // compression, width // compression]) | |
| b_latent = torch.zeros([batch_size, 4, height // 4, width // 4]) | |
| return ({ | |
| "samples": c_latent, | |
| }, { | |
| "samples": b_latent, | |
| }) | |
| class StableCascade_StageC_VAEEncode: | |
| def __init__(self, device="cpu"): | |
| self.device = device | |
| def INPUT_TYPES(s): | |
| return {"required": { | |
| "image": ("IMAGE",), | |
| "vae": ("VAE", ), | |
| "compression": ("INT", {"default": 42, "min": 4, "max": 128, "step": 1}), | |
| }} | |
| RETURN_TYPES = ("LATENT", "LATENT") | |
| RETURN_NAMES = ("stage_c", "stage_b") | |
| FUNCTION = "generate" | |
| CATEGORY = "latent/stable_cascade" | |
| def generate(self, image, vae, compression): | |
| width = image.shape[-2] | |
| height = image.shape[-3] | |
| out_width = (width // compression) * vae.downscale_ratio | |
| out_height = (height // compression) * vae.downscale_ratio | |
| s = comfy.utils.common_upscale(image.movedim(-1,1), out_width, out_height, "bicubic", "center").movedim(1,-1) | |
| c_latent = vae.encode(s[:,:,:,:3]) | |
| b_latent = torch.zeros([c_latent.shape[0], 4, (height // 8) * 2, (width // 8) * 2]) | |
| return ({ | |
| "samples": c_latent, | |
| }, { | |
| "samples": b_latent, | |
| }) | |
| class StableCascade_StageB_Conditioning: | |
| def INPUT_TYPES(s): | |
| return {"required": { "conditioning": ("CONDITIONING",), | |
| "stage_c": ("LATENT",), | |
| }} | |
| RETURN_TYPES = ("CONDITIONING",) | |
| FUNCTION = "set_prior" | |
| CATEGORY = "conditioning/stable_cascade" | |
| def set_prior(self, conditioning, stage_c): | |
| c = [] | |
| for t in conditioning: | |
| d = t[1].copy() | |
| d['stable_cascade_prior'] = stage_c['samples'] | |
| n = [t[0], d] | |
| c.append(n) | |
| return (c, ) | |
| class StableCascade_SuperResolutionControlnet: | |
| def __init__(self, device="cpu"): | |
| self.device = device | |
| def INPUT_TYPES(s): | |
| return {"required": { | |
| "image": ("IMAGE",), | |
| "vae": ("VAE", ), | |
| }} | |
| RETURN_TYPES = ("IMAGE", "LATENT", "LATENT") | |
| RETURN_NAMES = ("controlnet_input", "stage_c", "stage_b") | |
| FUNCTION = "generate" | |
| EXPERIMENTAL = True | |
| CATEGORY = "_for_testing/stable_cascade" | |
| def generate(self, image, vae): | |
| width = image.shape[-2] | |
| height = image.shape[-3] | |
| batch_size = image.shape[0] | |
| controlnet_input = vae.encode(image[:,:,:,:3]).movedim(1, -1) | |
| c_latent = torch.zeros([batch_size, 16, height // 16, width // 16]) | |
| b_latent = torch.zeros([batch_size, 4, height // 2, width // 2]) | |
| return (controlnet_input, { | |
| "samples": c_latent, | |
| }, { | |
| "samples": b_latent, | |
| }) | |
| NODE_CLASS_MAPPINGS = { | |
| "StableCascade_EmptyLatentImage": StableCascade_EmptyLatentImage, | |
| "StableCascade_StageB_Conditioning": StableCascade_StageB_Conditioning, | |
| "StableCascade_StageC_VAEEncode": StableCascade_StageC_VAEEncode, | |
| "StableCascade_SuperResolutionControlnet": StableCascade_SuperResolutionControlnet, | |
| } | |