File size: 5,629 Bytes
aae972d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
import gradio as gr
from datasets import load_dataset
from huggingface_hub import HfApi
import pandas as pd

# Initialize HF API
api = HfApi()

def get_branches(repo_id="lvwerra/fineweb-ultra"):
    """Get all branches from the dataset repository"""
    try:
        repo_info = api.repo_info(repo_id, repo_type="dataset")
        branches = [ref.name for ref in repo_info.siblings if ref.name != "main"]
        # Sort branches by timestamp (newest first)
        branches.sort(reverse=True)
        return branches
    except Exception as e:
        print(f"Error fetching branches: {e}")
        return []

def load_branch_data(repo_id, branch_name):
    """Load dataset from a specific branch"""
    try:
        dataset = load_dataset(repo_id, revision=branch_name, split="train")
        return dataset
    except Exception as e:
        print(f"Error loading branch {branch_name}: {e}")
        return None

def update_branch_dropdown():
    """Update the branch dropdown with available branches"""
    branches = get_branches()
    if branches:
        return gr.Dropdown(choices=branches, value=branches[0], label="Select Branch")
    else:
        return gr.Dropdown(choices=[], value=None, label="No branches found")

def load_dataset_for_branch(branch_name):
    """Load dataset when branch is selected"""
    if not branch_name:
        return None, gr.Slider(maximum=0, value=0), "", ""
    
    dataset = load_branch_data("lvwerra/fineweb-ultra", branch_name)
    if dataset is None:
        return None, gr.Slider(maximum=0, value=0), "Error loading dataset", "Error loading dataset"
    
    max_samples = len(dataset) - 1
    
    # Load first sample
    sample = dataset[0]
    original_text = sample.get("original_text", sample.get("text", "No original text found"))
    rephrased_text = sample.get("rephrased_text", "No rephrased text found")
    
    return dataset, gr.Slider(maximum=max_samples, value=0, step=1, label=f"Sample Index (0-{max_samples})"), original_text, rephrased_text

def update_sample(dataset, sample_idx):
    """Update the text display when slider changes"""
    if dataset is None or sample_idx >= len(dataset):
        return "No data available", "No data available"
    
    sample = dataset[int(sample_idx)]
    original_text = sample.get("original_text", sample.get("text", "No original text found"))
    rephrased_text = sample.get("rephrased_text", "No rephrased text found")
    
    return original_text, rephrased_text

def format_text_for_display(text, title):
    """Format text with a title for better display"""
    return f"## {title}\n\n{text}"

# Create Gradio interface
with gr.Blocks(title="Dataset Branch Viewer", theme=gr.themes.Soft()) as demo:
    gr.Markdown("# Dataset Branch Viewer")
    gr.Markdown("Compare original and rephrased text samples from different dataset branches")
    
    # Store dataset in state
    dataset_state = gr.State(value=None)
    
    with gr.Row():
        with gr.Column(scale=1):
            refresh_btn = gr.Button("🔄 Refresh Branches", variant="secondary")
            branch_dropdown = gr.Dropdown(
                choices=get_branches(),
                value=get_branches()[0] if get_branches() else None,
                label="Select Branch",
                info="Choose a timestamp branch to view"
            )
            
            sample_slider = gr.Slider(
                minimum=0,
                maximum=0,
                value=0,
                step=1,
                label="Sample Index",
                info="Navigate through samples"
            )
            
            with gr.Row():
                gr.Markdown("### Sample Info")
                sample_info = gr.Markdown("Select a branch to start")
    
    with gr.Row():
        with gr.Column():
            original_display = gr.Markdown(
                "## Original Text\n\nSelect a branch and sample to view content",
                label="Original Text"
            )
        
        with gr.Column():
            rephrased_display = gr.Markdown(
                "## Rephrased Text\n\nSelect a branch and sample to view content",
                label="Rephrased Text"
            )
    
    # Event handlers
    refresh_btn.click(
        fn=update_branch_dropdown,
        outputs=[branch_dropdown]
    )
    
    branch_dropdown.change(
        fn=load_dataset_for_branch,
        inputs=[branch_dropdown],
        outputs=[dataset_state, sample_slider, original_display, rephrased_display]
    )
    
    sample_slider.change(
        fn=update_sample,
        inputs=[dataset_state, sample_slider],
        outputs=[original_display, rephrased_display]
    )
    
    # Update sample info when slider changes
    def update_sample_info(dataset, sample_idx):
        if dataset is None:
            return "No dataset loaded"
        
        total_samples = len(dataset)
        current_sample = int(sample_idx)
        sample = dataset[current_sample]
        sample_id = sample.get("id", "Unknown")
        
        return f"**Sample {current_sample + 1} of {total_samples}** | ID: `{sample_id}`"
    
    sample_slider.change(
        fn=update_sample_info,
        inputs=[dataset_state, sample_slider],
        outputs=[sample_info]
    )
    
    # Load initial data if branches exist
    initial_branches = get_branches()
    if initial_branches:
        demo.load(
            fn=load_dataset_for_branch,
            inputs=[gr.State(initial_branches[0])],
            outputs=[dataset_state, sample_slider, original_display, rephrased_display]
        )

# Launch the app
if __name__ == "__main__":
    demo.launch()