mariusjabami commited on
Commit
88bfb08
·
verified ·
1 Parent(s): 0505899

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +9 -5
app.py CHANGED
@@ -1,15 +1,19 @@
 
1
  import threading
2
  import time
3
  import gradio as gr
4
  from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer
5
  import torch
6
 
 
 
7
  # Configuração do modelo
8
  model_id = "lxcorp/Synap-2b"
9
- tokenizer = AutoTokenizer.from_pretrained(model_id)
10
  model = AutoModelForCausalLM.from_pretrained(
11
  model_id,
12
- torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32
 
13
  )
14
  device = "cuda" if torch.cuda.is_available() else "cpu"
15
  model.to(device)
@@ -44,7 +48,7 @@ def generate_response(message, max_tokens, temperature, top_p):
44
  global stop_signal
45
  stop_signal = False
46
 
47
- prompt = f"Question: {message}\nThinking: \nAnswer:"
48
  inputs = tokenizer(prompt, return_tensors="pt").to(device)
49
 
50
  streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
@@ -75,12 +79,12 @@ def generate_response(message, max_tokens, temperature, top_p):
75
 
76
  # Interface Gradio
77
  with gr.Blocks(css=css, theme="NoCrypt/miku") as app:
78
- chatbot = gr.Chatbot(label="λ", elem_id="chatbot")
79
  msg = gr.Textbox(label="Mensagem", placeholder="Digite aqui...", lines=2)
80
  send_btn = gr.Button("Enviar")
81
  stop_btn = gr.Button("Parar")
82
 
83
- max_tokens = gr.Slider(64, 512, value=128, step=1, label="Max Tokens")
84
  temperature = gr.Slider(0.1, 1.5, value=0.7, step=0.1, label="Temperature")
85
  top_p = gr.Slider(0.1, 1.0, value=0.95, step=0.05, label="Top-p")
86
 
 
1
+ import os
2
  import threading
3
  import time
4
  import gradio as gr
5
  from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer
6
  import torch
7
 
8
+ hf_token = os.getenv("Key")
9
+
10
  # Configuração do modelo
11
  model_id = "lxcorp/Synap-2b"
12
+ tokenizer = AutoTokenizer.from_pretrained(model_id, token=hf_token)
13
  model = AutoModelForCausalLM.from_pretrained(
14
  model_id,
15
+ torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
16
+ token=hf_token
17
  )
18
  device = "cuda" if torch.cuda.is_available() else "cpu"
19
  model.to(device)
 
48
  global stop_signal
49
  stop_signal = False
50
 
51
+ prompt = f"Entrada: {message}\nResposta:"
52
  inputs = tokenizer(prompt, return_tensors="pt").to(device)
53
 
54
  streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
 
79
 
80
  # Interface Gradio
81
  with gr.Blocks(css=css, theme="NoCrypt/miku") as app:
82
+ chatbot = gr.Chatbot(label="Synap - 2B", elem_id="chatbot")
83
  msg = gr.Textbox(label="Mensagem", placeholder="Digite aqui...", lines=2)
84
  send_btn = gr.Button("Enviar")
85
  stop_btn = gr.Button("Parar")
86
 
87
+ max_tokens = gr.Slider(64, 1024, value=128, step=1, label="Max Tokens")
88
  temperature = gr.Slider(0.1, 1.5, value=0.7, step=0.1, label="Temperature")
89
  top_p = gr.Slider(0.1, 1.0, value=0.95, step=0.05, label="Top-p")
90