Update app.py
Browse files
app.py
CHANGED
@@ -1,15 +1,19 @@
|
|
|
|
1 |
import threading
|
2 |
import time
|
3 |
import gradio as gr
|
4 |
from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer
|
5 |
import torch
|
6 |
|
|
|
|
|
7 |
# Configuração do modelo
|
8 |
model_id = "lxcorp/Synap-2b"
|
9 |
-
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
10 |
model = AutoModelForCausalLM.from_pretrained(
|
11 |
model_id,
|
12 |
-
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32
|
|
|
13 |
)
|
14 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
15 |
model.to(device)
|
@@ -44,7 +48,7 @@ def generate_response(message, max_tokens, temperature, top_p):
|
|
44 |
global stop_signal
|
45 |
stop_signal = False
|
46 |
|
47 |
-
prompt = f"
|
48 |
inputs = tokenizer(prompt, return_tensors="pt").to(device)
|
49 |
|
50 |
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
|
@@ -75,12 +79,12 @@ def generate_response(message, max_tokens, temperature, top_p):
|
|
75 |
|
76 |
# Interface Gradio
|
77 |
with gr.Blocks(css=css, theme="NoCrypt/miku") as app:
|
78 |
-
chatbot = gr.Chatbot(label="
|
79 |
msg = gr.Textbox(label="Mensagem", placeholder="Digite aqui...", lines=2)
|
80 |
send_btn = gr.Button("Enviar")
|
81 |
stop_btn = gr.Button("Parar")
|
82 |
|
83 |
-
max_tokens = gr.Slider(64,
|
84 |
temperature = gr.Slider(0.1, 1.5, value=0.7, step=0.1, label="Temperature")
|
85 |
top_p = gr.Slider(0.1, 1.0, value=0.95, step=0.05, label="Top-p")
|
86 |
|
|
|
1 |
+
import os
|
2 |
import threading
|
3 |
import time
|
4 |
import gradio as gr
|
5 |
from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer
|
6 |
import torch
|
7 |
|
8 |
+
hf_token = os.getenv("Key")
|
9 |
+
|
10 |
# Configuração do modelo
|
11 |
model_id = "lxcorp/Synap-2b"
|
12 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id, token=hf_token)
|
13 |
model = AutoModelForCausalLM.from_pretrained(
|
14 |
model_id,
|
15 |
+
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
16 |
+
token=hf_token
|
17 |
)
|
18 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
19 |
model.to(device)
|
|
|
48 |
global stop_signal
|
49 |
stop_signal = False
|
50 |
|
51 |
+
prompt = f"Entrada: {message}\nResposta:"
|
52 |
inputs = tokenizer(prompt, return_tensors="pt").to(device)
|
53 |
|
54 |
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
|
|
|
79 |
|
80 |
# Interface Gradio
|
81 |
with gr.Blocks(css=css, theme="NoCrypt/miku") as app:
|
82 |
+
chatbot = gr.Chatbot(label="Synap - 2B", elem_id="chatbot")
|
83 |
msg = gr.Textbox(label="Mensagem", placeholder="Digite aqui...", lines=2)
|
84 |
send_btn = gr.Button("Enviar")
|
85 |
stop_btn = gr.Button("Parar")
|
86 |
|
87 |
+
max_tokens = gr.Slider(64, 1024, value=128, step=1, label="Max Tokens")
|
88 |
temperature = gr.Slider(0.1, 1.5, value=0.7, step=0.1, label="Temperature")
|
89 |
top_p = gr.Slider(0.1, 1.0, value=0.95, step=0.05, label="Top-p")
|
90 |
|