|
import gradio as gr |
|
import torch |
|
import time |
|
import threading |
|
from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer |
|
|
|
|
|
model_name = "lambdaindie/lambda-1v-1B" |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
model = AutoModelForCausalLM.from_pretrained(model_name).to("cpu") |
|
|
|
|
|
stop_signal = {"stop": False} |
|
|
|
def generate_stream(prompt, max_tokens=512, temperature=0.7, top_p=0.95): |
|
stop_signal["stop"] = False |
|
inputs = tokenizer(prompt, return_tensors="pt").to("cpu") |
|
|
|
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True) |
|
|
|
generation_thread = threading.Thread( |
|
target=model.generate, |
|
kwargs=dict( |
|
input_ids=inputs["input_ids"], |
|
attention_mask=inputs["attention_mask"], |
|
streamer=streamer, |
|
max_new_tokens=max_tokens, |
|
do_sample=True, |
|
temperature=temperature, |
|
top_p=top_p, |
|
pad_token_id=tokenizer.eos_token_id, |
|
) |
|
) |
|
generation_thread.start() |
|
|
|
output = "" |
|
for token in streamer: |
|
if stop_signal["stop"]: |
|
break |
|
output += token |
|
yield output.strip() |
|
|
|
def stop_stream(): |
|
stop_signal["stop"] = True |
|
|
|
def respond(message, history, system_message, max_tokens, temperature, top_p): |
|
messages = [{"role": "system", "content": system_message}] if system_message else [] |
|
|
|
for user, assistant in history[-3:]: |
|
if user: |
|
messages.append({"role": "user", "content": user}) |
|
if assistant: |
|
messages.append({"role": "assistant", "content": assistant}) |
|
|
|
thinking_prompt = messages + [{"role": "user", "content": f"{message}\n\nThink step-by-step before answering."}] |
|
thinking_text = "\n".join([f"{m['role']}: {m['content']}" for m in thinking_prompt]) |
|
|
|
reasoning = "" |
|
yield '<div class="markdown-think">Thinking...</div>' |
|
|
|
start = time.time() |
|
for token in generate_stream(thinking_text, max_tokens, temperature, top_p): |
|
reasoning = token |
|
yield f'<div class="markdown-think">{reasoning.strip()}</div>' |
|
|
|
elapsed = time.time() - start |
|
yield f""" |
|
<div style="margin-top:12px;padding:8px 12px;background-color:#222;border-left:4px solid #888; |
|
font-family:'JetBrains Mono', monospace;color:#ccc;font-size:14px;"> |
|
Pensou por {elapsed:.1f} segundos |
|
</div> |
|
""" |
|
|
|
final_prompt = thinking_text + f"\n\nuser: {message}\nassistant: {reasoning.strip()}\nuser: Now answer based on your reasoning above.\nassistant:" |
|
final_answer = "" |
|
|
|
for token in generate_stream(final_prompt, max_tokens, temperature, top_p): |
|
final_answer = token |
|
yield final_answer.strip() |
|
|
|
|
|
|
|
css = """ |
|
@import url('https://fonts.googleapis.com/css2?family=JetBrains+Mono&display=swap'); |
|
* { font-family: 'JetBrains Mono', monospace !important; } |
|
html, body, .gradio-container { |
|
background-color: #111 !important; |
|
color: #e0e0e0 !important; |
|
} |
|
textarea, input, button, select { |
|
background-color: transparent !important; |
|
color: #e0e0e0 !important; |
|
border: 1px solid #444 !important; |
|
} |
|
.markdown-think { |
|
background-color: #1e1e1e; |
|
border-left: 4px solid #555; |
|
padding: 10px; |
|
margin-bottom: 8px; |
|
font-style: italic; |
|
white-space: pre-wrap; |
|
animation: pulse 1.5s infinite ease-in-out; |
|
} |
|
@keyframes pulse { |
|
0% { opacity: 0.6; } |
|
50% { opacity: 1.0; } |
|
100% { opacity: 0.6; } |
|
} |
|
""" |
|
|
|
theme = gr.themes.Base( |
|
primary_hue="gray", |
|
font=[gr.themes.GoogleFont("JetBrains Mono"), "monospace"] |
|
).set( |
|
body_background_fill="#111", |
|
body_text_color="#e0e0e0", |
|
input_background_fill="#222", |
|
input_border_color="#444", |
|
button_primary_background_fill="#333", |
|
button_primary_text_color="#e0e0e0", |
|
) |
|
|
|
chatbot = gr.ChatInterface( |
|
fn=respond, |
|
title="λambdAI", |
|
css=css, |
|
theme=theme, |
|
additional_inputs=[ |
|
gr.Textbox(value="", label="System Message"), |
|
gr.Slider(64, 2048, value=512, step=1, label="Max Tokens"), |
|
gr.Slider(0.1, 2.0, value=0.7, step=0.1, label="Temperature"), |
|
gr.Slider(0.1, 1.0, value=0.95, step=0.05, label="Top-p") |
|
] |
|
) |
|
|
|
stop_btn = gr.Button("Parar Geração") |
|
stop_btn.click(fn=stop_stream, inputs=[], outputs=[]) |
|
|
|
app = gr.Blocks() |
|
with app: |
|
chatbot.render() |
|
stop_btn.render() |
|
|
|
if __name__ == "__main__": |
|
app.launch(share=True) |