|
import gradio as gr |
|
from huggingface_hub import InferenceClient |
|
import time |
|
|
|
client = InferenceClient("lambdaindie/lambdai") |
|
|
|
def respond(message, history, system_message, max_tokens, temperature, top_p): |
|
|
|
messages = [{"role": "system", "content": system_message}] if system_message else [] |
|
|
|
for user, assistant in history: |
|
if user: |
|
messages.append({"role": "user", "content": user}) |
|
if assistant: |
|
messages.append({"role": "assistant", "content": assistant}) |
|
|
|
|
|
thinking_prompt = messages + [ |
|
{ |
|
"role": "user", |
|
"content": f"{message}\n\nThink step-by-step before answering." |
|
} |
|
] |
|
|
|
reasoning = "" |
|
yield "**Thinking...**\n```markdown\n```" |
|
|
|
for chunk in client.chat_completion( |
|
thinking_prompt, |
|
max_tokens=max_tokens, |
|
stream=True, |
|
temperature=temperature, |
|
top_p=top_p, |
|
): |
|
token = chunk.choices[0].delta.content or "" |
|
reasoning += token |
|
yield f"**Thinking...**\n```markdown\n{reasoning.strip()}```" |
|
|
|
time.sleep(0.5) |
|
|
|
|
|
final_prompt = messages + [ |
|
{"role": "user", "content": message}, |
|
{"role": "assistant", "content": reasoning.strip()}, |
|
{"role": "user", "content": "Now answer based on your reasoning above."} |
|
] |
|
|
|
final_answer = "" |
|
for chunk in client.chat_completion( |
|
final_prompt, |
|
max_tokens=max_tokens, |
|
stream=True, |
|
temperature=temperature, |
|
top_p=top_p, |
|
): |
|
token = chunk.choices[0].delta.content or "" |
|
final_answer += token |
|
yield final_answer.strip() |
|
|
|
demo = gr.ChatInterface( |
|
respond, |
|
title="LENIRΛ", |
|
theme=gr.themes.Base(primary_hue="gray", font=["JetBrains Mono", "monospace"]), |
|
additional_inputs=[ |
|
gr.Textbox( |
|
value="You are a concise, logical AI that explains its reasoning clearly before answering.", |
|
label="System Message" |
|
), |
|
gr.Slider(64, 2048, value=512, step=1, label="Max Tokens"), |
|
gr.Slider(0.1, 2.0, value=0.7, step=0.1, label="Temperature"), |
|
gr.Slider(0.1, 1.0, value=0.95, step=0.05, label="Top-p") |
|
] |
|
) |
|
|
|
if __name__ == "__main__": |
|
demo.launch() |