Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,167 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# app.py
|
2 |
+
import gradio as gr
|
3 |
+
from unsloth import FastLanguageModel
|
4 |
+
import torch
|
5 |
+
from PIL import Image
|
6 |
+
from transformers import TextStreamer
|
7 |
+
import os
|
8 |
+
|
9 |
+
# --- Configuration ---
|
10 |
+
# 1. Base Model Name (must match the one used for training)
|
11 |
+
BASE_MODEL_NAME = "unsloth/gemma-3n-E4B-it"
|
12 |
+
|
13 |
+
# 2. Your PEFT (LoRA) Model Name on Hugging Face Hub
|
14 |
+
# Replace 'your-username' and 'your-model-repo-name' with your actual details
|
15 |
+
PEFT_MODEL_NAME = "lyimo/mosquito-breeding-detection" # Or your Hugging Face repo path
|
16 |
+
|
17 |
+
# 3. Max sequence length (should match or exceed training setting)
|
18 |
+
MAX_SEQ_LENGTH = 2048
|
19 |
+
|
20 |
+
# --- Load Model and Tokenizer ---
|
21 |
+
print("Loading base model...")
|
22 |
+
model, tokenizer = FastLanguageModel.from_pretrained(
|
23 |
+
model_name=BASE_MODEL_NAME,
|
24 |
+
max_seq_length=MAX_SEQ_LENGTH,
|
25 |
+
dtype=None, # Auto-detect
|
26 |
+
load_in_4bit=True, # Match training setting
|
27 |
+
)
|
28 |
+
|
29 |
+
print("Loading LoRA adapters...")
|
30 |
+
model = FastLanguageModel.get_peft_model(model, peft_model_name=PEFT_MODEL_NAME)
|
31 |
+
|
32 |
+
print("Setting up chat template...")
|
33 |
+
from unsloth.chat_templates import get_chat_template
|
34 |
+
tokenizer = get_chat_template(tokenizer, chat_template="gemma-3")
|
35 |
+
|
36 |
+
print("Model and tokenizer loaded successfully!")
|
37 |
+
|
38 |
+
# --- Inference Function ---
|
39 |
+
def analyze_image(image, prompt):
|
40 |
+
"""
|
41 |
+
Analyzes the image using the fine-tuned model.
|
42 |
+
"""
|
43 |
+
if image is None:
|
44 |
+
return "Please upload an image."
|
45 |
+
|
46 |
+
# Save the uploaded image temporarily (or pass the PIL object, see notes)
|
47 |
+
# Unsloth's tokenizer often expects the image path during apply_chat_template
|
48 |
+
# for multimodal inputs.
|
49 |
+
temp_image_path = "temp_uploaded_image.jpg"
|
50 |
+
try:
|
51 |
+
image.save(temp_image_path) # Save PIL image from Gradio
|
52 |
+
|
53 |
+
# Construct messages
|
54 |
+
messages = [
|
55 |
+
{
|
56 |
+
"role": "user",
|
57 |
+
"content": [
|
58 |
+
{"type": "image", "image": temp_image_path}, # Pass the temporary path
|
59 |
+
{"type": "text", "text": prompt}
|
60 |
+
]
|
61 |
+
}
|
62 |
+
]
|
63 |
+
|
64 |
+
# Apply chat template
|
65 |
+
full_prompt = tokenizer.apply_chat_template(
|
66 |
+
messages,
|
67 |
+
tokenize=False,
|
68 |
+
add_generation_prompt=True
|
69 |
+
)
|
70 |
+
|
71 |
+
# Tokenize inputs
|
72 |
+
inputs = tokenizer(
|
73 |
+
full_prompt,
|
74 |
+
return_tensors="pt",
|
75 |
+
).to(model.device)
|
76 |
+
|
77 |
+
# --- Generation ---
|
78 |
+
# Collect the output text
|
79 |
+
output_text = ""
|
80 |
+
def text_collector(text):
|
81 |
+
nonlocal output_text
|
82 |
+
output_text += text
|
83 |
+
|
84 |
+
# Create a custom streamer to capture text
|
85 |
+
class GradioTextStreamer:
|
86 |
+
def __init__(self, tokenizer, callback=None):
|
87 |
+
self.tokenizer = tokenizer
|
88 |
+
self.callback = callback
|
89 |
+
self.token_cache = []
|
90 |
+
self.print_len = 0
|
91 |
+
|
92 |
+
def put(self, value):
|
93 |
+
if self.callback:
|
94 |
+
# Decode the current token(s)
|
95 |
+
self.token_cache.extend(value.tolist())
|
96 |
+
text = self.tokenizer.decode(self.token_cache, skip_special_tokens=True)
|
97 |
+
# Call the callback with the new text
|
98 |
+
self.callback(text[len(output_text):]) # Send only the new part
|
99 |
+
# Update output_text locally to track progress
|
100 |
+
nonlocal output_text
|
101 |
+
output_text = text
|
102 |
+
|
103 |
+
def end(self):
|
104 |
+
if self.callback:
|
105 |
+
# Ensure any remaining text is sent
|
106 |
+
self.callback("") # Signal end, or send final text if needed differently
|
107 |
+
self.token_cache = []
|
108 |
+
self.print_len = 0
|
109 |
+
|
110 |
+
streamer = GradioTextStreamer(tokenizer, callback=text_collector)
|
111 |
+
|
112 |
+
# Start generation in a separate thread to allow streaming
|
113 |
+
import threading
|
114 |
+
def generate_text():
|
115 |
+
_ = model.generate(
|
116 |
+
**inputs,
|
117 |
+
max_new_tokens=1024,
|
118 |
+
streamer=streamer,
|
119 |
+
# You can add other generation parameters here
|
120 |
+
# temperature=0.7,
|
121 |
+
# top_p=0.95,
|
122 |
+
# do_sample=True
|
123 |
+
)
|
124 |
+
# Signal completion after generation finishes
|
125 |
+
yield output_text # Final yield to ensure completeness
|
126 |
+
|
127 |
+
# Yield initial output and then stream updates
|
128 |
+
yield output_text # Initial empty or partial output
|
129 |
+
for _ in generate_text(): # This loop runs the generation
|
130 |
+
yield output_text # Yield updated text as it's generated
|
131 |
+
|
132 |
+
except Exception as e:
|
133 |
+
error_msg = f"An error occurred during processing: {str(e)}"
|
134 |
+
print(error_msg)
|
135 |
+
yield error_msg
|
136 |
+
finally:
|
137 |
+
# Clean up the temporary image file
|
138 |
+
if os.path.exists(temp_image_path):
|
139 |
+
os.remove(temp_image_path)
|
140 |
+
|
141 |
+
# --- Gradio Interface ---
|
142 |
+
with gr.Blocks() as demo:
|
143 |
+
gr.Markdown("# 🦟 Mosquito Breeding Site Detector")
|
144 |
+
gr.Markdown("Upload an image and ask the AI to analyze it for potential mosquito breeding sites.")
|
145 |
+
with gr.Row():
|
146 |
+
with gr.Column():
|
147 |
+
image_input = gr.Image(type="pil", label="Upload Image")
|
148 |
+
prompt_input = gr.Textbox(
|
149 |
+
label="Your Question",
|
150 |
+
value="Can you analyze this image for mosquito breeding sites and recommend what to do?",
|
151 |
+
lines=2
|
152 |
+
)
|
153 |
+
submit_btn = gr.Button("Analyze")
|
154 |
+
with gr.Column():
|
155 |
+
output_text = gr.Textbox(label="Analysis Result", interactive=False, lines=15)
|
156 |
+
|
157 |
+
# Connect the button to the function
|
158 |
+
submit_btn.click(
|
159 |
+
fn=analyze_image,
|
160 |
+
inputs=[image_input, prompt_input],
|
161 |
+
outputs=output_text, # Stream to the textbox
|
162 |
+
streaming=True # Enable streaming output
|
163 |
+
)
|
164 |
+
|
165 |
+
# Launch the app
|
166 |
+
if __name__ == "__main__":
|
167 |
+
demo.launch()
|