File size: 4,813 Bytes
4ab53a5
 
9497543
 
4ab53a5
 
 
9497543
 
4ab53a5
 
 
9497543
 
4ab53a5
9497543
 
 
 
 
 
 
 
 
 
 
75c875f
4ab53a5
 
 
 
 
 
 
75c875f
35abaee
4ab53a5
 
75c875f
35abaee
4ab53a5
9497543
 
 
 
4ab53a5
75c875f
 
4ab53a5
9497543
 
75c875f
9497543
75c875f
4ab53a5
9497543
 
 
 
 
 
 
 
 
4ab53a5
75c875f
9497543
 
 
 
 
 
 
 
 
 
 
 
 
4ab53a5
ef25918
 
 
75c875f
9497543
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ef25918
9497543
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
'''For specifying an LLM agent logic flow.'''
from . import ops
import dataclasses
import inspect
import json
import openai
import pandas as pd
import traceback
from . import workspace

client = openai.OpenAI(base_url="http://localhost:11434/v1")
CACHE = {}
ENV = 'LLM logic'
op = ops.op_registration(ENV)

@dataclasses.dataclass
class Context:
  '''Passed to operation functions as "_ctx" if they have such a parameter.'''
  node: workspace.WorkspaceNode
  last_result = None

@dataclasses.dataclass
class Output:
  '''Return this to send values to specific outputs of a node.'''
  output_handle: str
  value: dict

def chat(*args, **kwargs):
  key = json.dumps({'args': args, 'kwargs': kwargs})
  if key not in CACHE:
    completion = client.chat.completions.create(*args, **kwargs)
    CACHE[key] = [c.message.content for c in completion.choices]
  return CACHE[key]

@op("Input")
def input(*, filename: ops.PathStr, key: str):
  return pd.read_csv(filename).rename(columns={key: 'text'})

@op("Create prompt")
def create_prompt(input, *, template: ops.LongStr):
  assert template, 'Please specify the template. Refer to columns using their names in uppercase.'
  p = template
  for k, v in input.items():
    p = p.replace(k.upper(), str(v))
  return p

@op("Ask LLM")
def ask_llm(input, *, model: str, accepted_regex: str = None, max_tokens: int = 100):
  assert model, 'Please specify the model.'
  assert 'prompt' in input, 'Please create the prompt first.'
  options = {}
  if accepted_regex:
    options['extra_body'] = {
      "guided_regex": accepted_regex,
    }
  results = chat(
    model=model,
    max_tokens=max_tokens,
    messages=[
      {"role": "user", "content": input['prompt']},
    ],
    **options,
  )
  return [{**input, 'response': r} for r in results]

@op("View", view="table_view")
def view(input, *, _ctx: Context):
  v = _ctx.last_result
  if v:
    columns = v['dataframes']['df']['columns']
    v['dataframes']['df']['data'].append([input[c] for c in columns])
  else:
    columns = [str(c) for c in input.keys() if not str(c).startswith('_')]
    v = {
      'dataframes': { 'df': {
        'columns': columns,
        'data': [input[c] for c in columns],
      }}
    }
  return v

@ops.input_position(input="right")
@ops.output_position(output="left")
@op("Loop")
def loop(input, *, max_iterations: int = 3, _ctx: Context):
  '''Data can flow back here max_iterations-1 times.'''
  key = f'iterations-{_ctx.node.id}'
  input[key] = input.get(key, 0) + 1
  if input[key] < max_iterations:
    return input

@op('Branch', outputs=['true', 'false'])
def branch(input, *, expression: str):
  res = eval(expression, input)
  return Output(str(bool(res)).lower(), input)

@ops.input_position(db="top")
@op('RAG')
def rag(input, db, *, closest_n: int=10):
  return input

@op('Run Python')
def run_python(input, *, template: str):
  assert template, 'Please specify the template. Refer to columns using their names in uppercase.'
  p = template
  for k, v in input.items():
    p = p.replace(k.upper(), str(v))
  return p



@ops.register_executor(ENV)
def execute(ws):
  catalog = ops.CATALOGS[ENV]
  nodes = {n.id: n for n in ws.nodes}
  contexts = {n.id: Context(n) for n in ws.nodes}
  edges = {n.id: [] for n in ws.nodes}
  for e in ws.edges:
    edges[e.source].append(e.target)
  tasks = {}
  NO_INPUT = object() # Marker for initial tasks.
  for node in ws.nodes:
    node.data.error = None
    op = catalog[node.data.title]
    # Start tasks for nodes that have no inputs.
    if not op.inputs:
      tasks[node.id] = [NO_INPUT]
  # Run the rest until we run out of tasks.
  while tasks:
    n, ts = tasks.popitem()
    node = nodes[n]
    data = node.data
    op = catalog[data.title]
    params = {**data.params}
    if has_ctx(op):
      params['_ctx'] = contexts[node.id]
    results = []
    for task in ts:
      try:
        if task is NO_INPUT:
          result = op(**params)
        else:
          # TODO: Tasks with multiple inputs?
          result = op(task, **params)
      except Exception as e:
        traceback.print_exc()
        data.error = str(e)
        break
      contexts[node.id].last_result = result
      # Returned lists and DataFrames are considered multiple tasks.
      if isinstance(result, pd.DataFrame):
        result = df_to_list(result)
      elif not isinstance(result, list):
        result = [result]
      results.extend(result)
    else: # Finished all tasks without errors.
      if op.type == 'visualization' or op.type == 'table_view':
        data.display = results
      for target in edges[node.id]:
        tasks.setdefault(target, []).extend(results)

def df_to_list(df):
  return [dict(zip(df.columns, row)) for row in df.values]

def has_ctx(op):
  sig = inspect.signature(op.func)
  return '_ctx' in sig.parameters