Spaces:
Running
Running
File size: 6,556 Bytes
0daac8b f501df1 0daac8b f501df1 0daac8b 563314e 0daac8b 563314e 0daac8b f501df1 0daac8b 8387566 0daac8b 8387566 313b753 f501df1 0daac8b f501df1 0daac8b f501df1 0daac8b 563314e 3aa378b 3a28e0d f501df1 8387566 f501df1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 |
"""Boxes for defining PyTorch models."""
from lynxkite.core import ops, workspace
from lynxkite.core.ops import Parameter as P
import torch
import torch_geometric as pyg
ENV = "PyTorch model"
def reg(name, inputs=[], outputs=None, params=[]):
if outputs is None:
outputs = inputs
return ops.register_passive_op(
ENV,
name,
inputs=[
ops.Input(name=name, position="bottom", type="tensor") for name in inputs
],
outputs=[
ops.Output(name=name, position="top", type="tensor") for name in outputs
],
params=params,
)
reg("Input: embedding", outputs=["x"])
reg("Input: graph edges", outputs=["edges"])
reg("Input: label", outputs=["y"])
reg("Input: positive sample", outputs=["x_pos"])
reg("Input: negative sample", outputs=["x_neg"])
reg("Input: sequential", outputs=["y"])
reg("Input: zeros", outputs=["x"])
reg("LSTM", inputs=["x", "h"], outputs=["x", "h"])
reg(
"Neural ODE",
inputs=["x"],
params=[
P.basic("relative_tolerance"),
P.basic("absolute_tolerance"),
P.options(
"method",
[
"dopri8",
"dopri5",
"bosh3",
"fehlberg2",
"adaptive_heun",
"euler",
"midpoint",
"rk4",
"explicit_adams",
"implicit_adams",
],
),
],
)
reg("Attention", inputs=["q", "k", "v"], outputs=["x", "weights"])
reg("LayerNorm", inputs=["x"])
reg("Dropout", inputs=["x"], params=[P.basic("p", 0.5)])
reg("Linear", inputs=["x"], params=[P.basic("output_dim", "same")])
reg("Softmax", inputs=["x"])
reg(
"Graph conv",
inputs=["x", "edges"],
outputs=["x"],
params=[P.options("type", ["GCNConv", "GATConv", "GATv2Conv", "SAGEConv"])],
)
reg(
"Activation",
inputs=["x"],
params=[P.options("type", ["ReLU", "LeakyReLU", "Tanh", "Mish"])],
)
reg("Concatenate", inputs=["a", "b"], outputs=["x"])
reg("Add", inputs=["a", "b"], outputs=["x"])
reg("Subtract", inputs=["a", "b"], outputs=["x"])
reg("Multiply", inputs=["a", "b"], outputs=["x"])
reg("MSE loss", inputs=["x", "y"], outputs=["loss"])
reg("Triplet margin loss", inputs=["x", "x_pos", "x_neg"], outputs=["loss"])
reg("Cross-entropy loss", inputs=["x", "y"], outputs=["loss"])
reg(
"Optimizer",
inputs=["loss"],
outputs=[],
params=[
P.options(
"type",
[
"AdamW",
"Adafactor",
"Adagrad",
"SGD",
"Lion",
"Paged AdamW",
"Galore AdamW",
],
),
P.basic("lr", 0.001),
],
)
ops.register_passive_op(
ENV,
"Repeat",
inputs=[ops.Input(name="input", position="top", type="tensor")],
outputs=[ops.Output(name="output", position="bottom", type="tensor")],
params=[ops.Parameter.basic("times", 1, int)],
)
ops.register_passive_op(
ENV,
"Recurrent chain",
inputs=[ops.Input(name="input", position="top", type="tensor")],
outputs=[ops.Output(name="output", position="bottom", type="tensor")],
params=[],
)
def build_model(ws: workspace.Workspace, inputs: dict):
"""Builds the model described in the workspace."""
optimizers = []
for node in ws.nodes:
if node.op.name == "Optimizer":
optimizers.append(node)
assert optimizers, "No optimizer found."
assert len(optimizers) == 1, f"More than one optimizer found: {optimizers}"
[optimizer] = optimizers
inputs = {n.id: [] for n in ws.nodes}
for e in ws.edges:
inputs[e.target].append(e.source)
layers = []
def build_model(cfg, device, dropout=None):
F.triplet_margin_loss
layers.append((pyg.nn.Linear(E, H), "x -> x"))
layers.append((torch.nn.LayerNorm(H), "x -> x"))
for i in range(cfg.attention_layers):
layers.append(
(torch.nn.MultiheadAttention(H, 1, batch_first=True), "x, x, x -> x")
)
# Pick values, not weights.
layers.append(lambda res: res[0])
layers.append(torch.nn.LayerNorm(H))
# Just take the first token embedding after attention?
layers.append(lambda res: res[:, 0, :])
encoder = pyg.nn.Sequential("x", layers).to(device)
for i in range(cfg.gnn_layers):
layers.append((cfg.conv(E, H), "x, edge_index -> x"))
if dropout:
layers.append(torch.nn.Dropout(dropout))
layers.append(cfg.activation())
for i in range(cfg.mlp_layers - 1):
layers.append((pyg.nn.Linear(E, H), "x -> x"))
if dropout:
layers.append(torch.nn.Dropout(dropout))
layers.append(cfg.activation())
layers.append((pyg.nn.Linear(E, H), "x -> x"))
if cfg.predict == "remaining_steps":
assert cfg.loss_fn != F.triplet_margin_loss, (
"Triplet loss is only for embedding outputs."
)
layers.append((pyg.nn.Linear(E, 1), "x -> x"))
elif cfg.predict == "tactics":
assert cfg.loss_fn == F.cross_entropy, (
"Use cross entropy for tactic prediction."
)
layers.append((pyg.nn.Linear(E, len(TACTICS)), "x -> x"))
elif cfg.predict == "link_likelihood_for_states":
pass # Just output the embedding.
elif cfg.embedding["method"] != "learned":
layers.append((pyg.nn.Linear(E, E), "x -> x"))
m = pyg.nn.Sequential("x, edge_index", layers).to(device)
if cfg.predict == "link_likelihood_for_states":
# The comparator takes two embeddings (state and theorem) and predicts the link.
layers = []
layers.append(
(
lambda state, theorem: torch.cat([state, theorem], dim=1),
"state, theorem -> x",
)
)
for i in range(cfg.comparator_layers):
layers.append((pyg.nn.Linear(E, H), "x -> x"))
if dropout:
layers.append(torch.nn.Dropout(dropout))
layers.append(cfg.activation())
assert cfg.loss_fn != F.triplet_margin_loss, (
"Triplet loss is only for embedding outputs."
)
layers.append((pyg.nn.Linear(E, 1), "x -> x"))
# Sigmoid activation at the end to get a probability.
layers.append((torch.nn.Sigmoid(), "x -> x"))
m.comparator = pyg.nn.Sequential("state, theorem", layers).to(device)
if encoder and cfg.predict in ["nodes", "links", "links_for_states"]:
m.encoder = encoder
return m
|