File size: 6,556 Bytes
0daac8b
 
f501df1
0daac8b
f501df1
 
0daac8b
 
 
 
 
 
 
 
 
 
 
563314e
0daac8b
 
563314e
0daac8b
 
 
 
 
f501df1
0daac8b
 
 
 
8387566
 
0daac8b
8387566
313b753
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f501df1
0daac8b
 
 
f501df1
0daac8b
 
 
 
 
 
 
 
 
 
 
f501df1
 
 
 
 
 
 
0daac8b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
563314e
 
3aa378b
 
 
 
 
 
3a28e0d
f501df1
8387566
 
 
 
 
 
 
 
f501df1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
"""Boxes for defining PyTorch models."""

from lynxkite.core import ops, workspace
from lynxkite.core.ops import Parameter as P
import torch
import torch_geometric as pyg

ENV = "PyTorch model"


def reg(name, inputs=[], outputs=None, params=[]):
    if outputs is None:
        outputs = inputs
    return ops.register_passive_op(
        ENV,
        name,
        inputs=[
            ops.Input(name=name, position="bottom", type="tensor") for name in inputs
        ],
        outputs=[
            ops.Output(name=name, position="top", type="tensor") for name in outputs
        ],
        params=params,
    )


reg("Input: embedding", outputs=["x"])
reg("Input: graph edges", outputs=["edges"])
reg("Input: label", outputs=["y"])
reg("Input: positive sample", outputs=["x_pos"])
reg("Input: negative sample", outputs=["x_neg"])
reg("Input: sequential", outputs=["y"])
reg("Input: zeros", outputs=["x"])

reg("LSTM", inputs=["x", "h"], outputs=["x", "h"])
reg(
    "Neural ODE",
    inputs=["x"],
    params=[
        P.basic("relative_tolerance"),
        P.basic("absolute_tolerance"),
        P.options(
            "method",
            [
                "dopri8",
                "dopri5",
                "bosh3",
                "fehlberg2",
                "adaptive_heun",
                "euler",
                "midpoint",
                "rk4",
                "explicit_adams",
                "implicit_adams",
            ],
        ),
    ],
)
reg("Attention", inputs=["q", "k", "v"], outputs=["x", "weights"])
reg("LayerNorm", inputs=["x"])
reg("Dropout", inputs=["x"], params=[P.basic("p", 0.5)])
reg("Linear", inputs=["x"], params=[P.basic("output_dim", "same")])
reg("Softmax", inputs=["x"])
reg(
    "Graph conv",
    inputs=["x", "edges"],
    outputs=["x"],
    params=[P.options("type", ["GCNConv", "GATConv", "GATv2Conv", "SAGEConv"])],
)
reg(
    "Activation",
    inputs=["x"],
    params=[P.options("type", ["ReLU", "LeakyReLU", "Tanh", "Mish"])],
)
reg("Concatenate", inputs=["a", "b"], outputs=["x"])
reg("Add", inputs=["a", "b"], outputs=["x"])
reg("Subtract", inputs=["a", "b"], outputs=["x"])
reg("Multiply", inputs=["a", "b"], outputs=["x"])
reg("MSE loss", inputs=["x", "y"], outputs=["loss"])
reg("Triplet margin loss", inputs=["x", "x_pos", "x_neg"], outputs=["loss"])
reg("Cross-entropy loss", inputs=["x", "y"], outputs=["loss"])
reg(
    "Optimizer",
    inputs=["loss"],
    outputs=[],
    params=[
        P.options(
            "type",
            [
                "AdamW",
                "Adafactor",
                "Adagrad",
                "SGD",
                "Lion",
                "Paged AdamW",
                "Galore AdamW",
            ],
        ),
        P.basic("lr", 0.001),
    ],
)

ops.register_passive_op(
    ENV,
    "Repeat",
    inputs=[ops.Input(name="input", position="top", type="tensor")],
    outputs=[ops.Output(name="output", position="bottom", type="tensor")],
    params=[ops.Parameter.basic("times", 1, int)],
)

ops.register_passive_op(
    ENV,
    "Recurrent chain",
    inputs=[ops.Input(name="input", position="top", type="tensor")],
    outputs=[ops.Output(name="output", position="bottom", type="tensor")],
    params=[],
)


def build_model(ws: workspace.Workspace, inputs: dict):
    """Builds the model described in the workspace."""
    optimizers = []
    for node in ws.nodes:
        if node.op.name == "Optimizer":
            optimizers.append(node)
    assert optimizers, "No optimizer found."
    assert len(optimizers) == 1, f"More than one optimizer found: {optimizers}"
    [optimizer] = optimizers
    inputs = {n.id: [] for n in ws.nodes}
    for e in ws.edges:
        inputs[e.target].append(e.source)
    layers = []


def build_model(cfg, device, dropout=None):
    F.triplet_margin_loss
    layers.append((pyg.nn.Linear(E, H), "x -> x"))
    layers.append((torch.nn.LayerNorm(H), "x -> x"))
    for i in range(cfg.attention_layers):
        layers.append(
            (torch.nn.MultiheadAttention(H, 1, batch_first=True), "x, x, x -> x")
        )
    # Pick values, not weights.
    layers.append(lambda res: res[0])
    layers.append(torch.nn.LayerNorm(H))
    # Just take the first token embedding after attention?
    layers.append(lambda res: res[:, 0, :])
    encoder = pyg.nn.Sequential("x", layers).to(device)
    for i in range(cfg.gnn_layers):
        layers.append((cfg.conv(E, H), "x, edge_index -> x"))
        if dropout:
            layers.append(torch.nn.Dropout(dropout))
        layers.append(cfg.activation())
    for i in range(cfg.mlp_layers - 1):
        layers.append((pyg.nn.Linear(E, H), "x -> x"))
        if dropout:
            layers.append(torch.nn.Dropout(dropout))
        layers.append(cfg.activation())
    layers.append((pyg.nn.Linear(E, H), "x -> x"))
    if cfg.predict == "remaining_steps":
        assert cfg.loss_fn != F.triplet_margin_loss, (
            "Triplet loss is only for embedding outputs."
        )
        layers.append((pyg.nn.Linear(E, 1), "x -> x"))
    elif cfg.predict == "tactics":
        assert cfg.loss_fn == F.cross_entropy, (
            "Use cross entropy for tactic prediction."
        )
        layers.append((pyg.nn.Linear(E, len(TACTICS)), "x -> x"))
    elif cfg.predict == "link_likelihood_for_states":
        pass  # Just output the embedding.
    elif cfg.embedding["method"] != "learned":
        layers.append((pyg.nn.Linear(E, E), "x -> x"))
    m = pyg.nn.Sequential("x, edge_index", layers).to(device)
    if cfg.predict == "link_likelihood_for_states":
        # The comparator takes two embeddings (state and theorem) and predicts the link.
        layers = []
        layers.append(
            (
                lambda state, theorem: torch.cat([state, theorem], dim=1),
                "state, theorem -> x",
            )
        )
        for i in range(cfg.comparator_layers):
            layers.append((pyg.nn.Linear(E, H), "x -> x"))
            if dropout:
                layers.append(torch.nn.Dropout(dropout))
            layers.append(cfg.activation())
        assert cfg.loss_fn != F.triplet_margin_loss, (
            "Triplet loss is only for embedding outputs."
        )
        layers.append((pyg.nn.Linear(E, 1), "x -> x"))
        # Sigmoid activation at the end to get a probability.
        layers.append((torch.nn.Sigmoid(), "x -> x"))
        m.comparator = pyg.nn.Sequential("state, theorem", layers).to(device)
    if encoder and cfg.predict in ["nodes", "links", "links_for_states"]:
        m.encoder = encoder
    return m