Spaces:
Running
Running
File size: 33,607 Bytes
9d40ea2 4cf35ad 9d40ea2 4cf35ad |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 |
import os
import pickle
from lynxkite.core.ops import op
from matplotlib import pyplot as plt
import pandas as pd
from rdkit.Chem.Draw import rdMolDraw2D
from PIL import Image
from rdkit import Chem
from rdkit.Chem import Descriptors
from rdkit.Chem import Crippen, Lipinski
from rdkit import DataStructs
import math
import io
from rdkit.Chem import AllChem
from sklearn.ensemble import RandomForestRegressor
from sklearn.metrics import r2_score, mean_absolute_error, mean_squared_error
from sklearn.model_selection import train_test_split
import numpy as np
from rdkit.Chem import MACCSkeys
@op("LynxKite Graph Analytics", "View mol filter", view="matplotlib", slow=True)
def mol_filter(
bundle,
*,
table_name: str,
SMILES_Column: str,
mols_per_row: int,
filter_smarts: str = None,
filter_smiles: str = None,
highlight: bool = True,
):
"""
Draws a grid of molecules in square boxes, with optional filtering and substructure highlighting.
Parameters:
- bundle: data bundle containing a DataFrame in bundle.dfs[table_name]
- table_name: name of the table in bundle.dfs
- column_name: column containing SMILES strings
- mols_per_row: number of molecules per row in the grid
- filter_smarts: SMARTS pattern to filter and highlight
- filter_smiles: SMILES substructure to filter and highlight (if filter_smarts is None)
- highlight: whether to highlight matching substructures
"""
# get DataFrame
df = bundle.dfs[table_name].copy()
df["mol"] = df[SMILES_Column].apply(Chem.MolFromSmiles)
df = df[df["mol"].notnull()].reset_index(drop=True)
# compile substructure query if provided
query = None
if filter_smarts:
query = Chem.MolFromSmarts(filter_smarts)
elif filter_smiles:
query = Chem.MolFromSmiles(filter_smiles)
# compute properties and legends
df["MW"] = df["mol"].apply(Descriptors.MolWt)
df["logP"] = df["mol"].apply(Crippen.MolLogP)
df["HBD"] = df["mol"].apply(Lipinski.NumHDonors)
df["HBA"] = df["mol"].apply(Lipinski.NumHAcceptors)
legends = []
for _, row in df.iterrows():
mol = row["mol"]
# filter by substructure
if query and not mol.HasSubstructMatch(query):
continue
# find atom and bond matches
atom_ids, bond_ids = [], []
if highlight and query:
atom_ids = list(mol.GetSubstructMatch(query))
# find bonds where both ends are in atom_ids
for bond in mol.GetBonds():
a1 = bond.GetBeginAtomIdx()
a2 = bond.GetEndAtomIdx()
if a1 in atom_ids and a2 in atom_ids:
bond_ids.append(bond.GetIdx())
legend = (
f"{row['Name']} pIC50={row['pIC50']:.2f}\n"
f"MW={row['MW']:.1f}, logP={row['logP']:.2f}\n"
f"HBD={row['HBD']}, HBA={row['HBA']}"
)
legends.append((mol, legend, atom_ids, bond_ids))
if not legends:
raise ValueError("No molecules passed the filter.")
# draw each filtered molecule
images = []
for mol, legend, atom_ids, bond_ids in legends:
drawer = rdMolDraw2D.MolDraw2DCairo(400, 350)
opts = drawer.drawOptions()
opts.legendFontSize = 200
drawer.DrawMolecule(mol, legend=legend, highlightAtoms=atom_ids, highlightBonds=bond_ids)
drawer.FinishDrawing()
sub_png = drawer.GetDrawingText()
sub_img = Image.open(io.BytesIO(sub_png))
images.append(sub_img)
plot_gallery(images, num_cols=mols_per_row)
@op("LynxKite Graph Analytics", "Lipinski filter")
def lipinski_filter(bundle, *, table_name: str, column_name: str, strict_lipinski: bool = True):
# copy bundle and get DataFrame
bundle = bundle.copy()
df = bundle.dfs[table_name].copy()
df["mol"] = df[column_name].apply(Chem.MolFromSmiles)
df = df[df["mol"].notnull()].reset_index(drop=True)
# compute properties
df["MW"] = df["mol"].apply(Descriptors.MolWt)
df["logP"] = df["mol"].apply(Crippen.MolLogP)
df["HBD"] = df["mol"].apply(Lipinski.NumHDonors)
df["HBA"] = df["mol"].apply(Lipinski.NumHAcceptors)
# compute a boolean pass/fail for Lipinski
df["pass_lipinski"] = (
(df["MW"] <= 500) & (df["logP"] <= 5) & (df["HBD"] <= 5) & (df["HBA"] <= 10)
)
df = df.drop("mol", axis=1)
# if strict_lipinski, drop those that fail
if strict_lipinski:
failed = df.loc[~df["pass_lipinski"], column_name].tolist()
df = df[df["pass_lipinski"]].reset_index(drop=True)
if failed:
print(f"Dropped {len(failed)} molecules that failed Lipinski: {failed}")
return df
@op("LynxKite Graph Analytics", "View mol image", view="matplotlib", slow=True)
def mol_image(bundle, *, table_name: str, smiles_column: str, mols_per_row: int):
df = bundle.dfs[table_name].copy()
df["mol"] = df[smiles_column].apply(Chem.MolFromSmiles)
df = df[df["mol"].notnull()].reset_index(drop=True)
df["MW"] = df["mol"].apply(Descriptors.MolWt)
df["logP"] = df["mol"].apply(Crippen.MolLogP)
df["HBD"] = df["mol"].apply(Lipinski.NumHDonors)
df["HBA"] = df["mol"].apply(Lipinski.NumHAcceptors)
legends = []
for _, row in df.iterrows():
legends.append(
f"{row['Name']} pIC50={row['pIC50']:.2f}\n"
f"MW={row['MW']:.1f}, logP={row['logP']:.2f}\n"
f"HBD={row['HBD']}, HBA={row['HBA']}"
)
mols = df["mol"].tolist()
if not mols:
raise ValueError("No valid molecules to draw.")
# --- draw each molecule into its own sub‐image and paste ---
images = []
for mol, legend in zip(mols, legends):
# draw one molecule
drawer = rdMolDraw2D.MolDraw2DCairo(400, 350)
opts = drawer.drawOptions()
opts.legendFontSize = 200
drawer.DrawMolecule(mol, legend=legend)
drawer.FinishDrawing()
sub_png = drawer.GetDrawingText()
sub_img = Image.open(io.BytesIO(sub_png))
images.append(sub_img)
plot_gallery(images, num_cols=mols_per_row)
def plot_gallery(images, num_cols):
num_rows = math.ceil(len(images) / num_cols)
fig, axes = plt.subplots(num_rows, num_cols, figsize=(num_cols * 4, num_rows * 3.5))
axes = axes.flatten()
for i, ax in enumerate(axes):
if i < len(images):
ax.imshow(images[i])
ax.set_xticks([])
ax.set_yticks([])
plt.tight_layout()
@op("LynxKite Graph Analytics", "Train QSAR model")
def build_qsar_model(
bundle,
*,
table_name: str,
smiles_col: str,
target_col: str,
fp_type: str,
radius: int = 2,
n_bits: int = 2048,
test_size: float = 0.2,
random_state: int = 42,
out_dir: str = "Models",
):
"""
Train and save a RandomForest QSAR model using one fingerprint type.
Parameters
----------
bundle : any
An object with a dict‐like attribute `.dfs` mapping table names to DataFrames.
table_name : str
Key into bundle.dfs to get the DataFrame.
smiles_col : str
Name of the column containing SMILES strings.
target_col : str
Name of the column containing the numeric response.
fp_type : str
Fingerprint to compute: "ecfp", "rdkit", "torsion", "atompair", or "maccs".
radius : int
Radius for the Morgan (ECFP) fingerprint.
n_bits : int
Bit‐vector length for all fp types except MACCS (167).
test_size : float
Fraction of data held out for testing.
random_state : int
Random seed for reproducibility.
out_dir : str
Directory in which to save `qsar_model_<fp_type>.pkl`.
Returns
-------
model : RandomForestRegressor
The trained QSAR model.
metrics_df : pandas.DataFrame
R², MAE and RMSE on train and test splits.
"""
# 1) load and sanitize data
df = bundle.dfs.get(table_name)
if df is None:
raise KeyError(f"Table '{table_name}' not found in bundle.dfs")
df = df.copy()
df["mol"] = df[smiles_col].apply(Chem.MolFromSmiles)
df = df[df["mol"].notnull()].reset_index(drop=True)
if df.empty:
raise ValueError(f"No valid molecules in '{smiles_col}'")
# 2) create a fixed train/test split
indices = np.arange(len(df))
train_idx, test_idx = train_test_split(indices, test_size=test_size, random_state=random_state)
# 3) featurize
fps = []
for mol in df["mol"]:
if fp_type == "ecfp":
bv = AllChem.GetMorganFingerprintAsBitVect(mol, radius, nBits=n_bits)
arr = np.zeros((n_bits,), dtype=np.int8)
DataStructs.ConvertToNumpyArray(bv, arr)
elif fp_type == "rdkit":
bv = Chem.RDKFingerprint(mol, fpSize=n_bits)
arr = np.zeros((n_bits,), dtype=np.int8)
DataStructs.ConvertToNumpyArray(bv, arr)
elif fp_type == "torsion":
bv = AllChem.GetHashedTopologicalTorsionFingerprintAsBitVect(mol, nBits=n_bits)
arr = np.zeros((n_bits,), dtype=np.int8)
DataStructs.ConvertToNumpyArray(bv, arr)
elif fp_type == "atompair":
bv = AllChem.GetHashedAtomPairFingerprintAsBitVect(mol, nBits=n_bits)
arr = np.zeros((n_bits,), dtype=np.int8)
DataStructs.ConvertToNumpyArray(bv, arr)
elif fp_type == "maccs":
bv = Chem.MACCSkeys.GenMACCSKeys(mol) # 167 bits
arr = np.zeros((167,), dtype=np.int8)
DataStructs.ConvertToNumpyArray(bv, arr)
else:
raise ValueError(f"Unsupported fingerprint type: '{fp_type}'")
fps.append(arr)
X = np.vstack(fps)
y = df[target_col].values
# 4) split features/labels
X_train, y_train = X[train_idx], y[train_idx]
X_test, y_test = X[test_idx], y[test_idx]
# 5) train RandomForest
model = RandomForestRegressor(random_state=random_state)
model.fit(X_train, y_train)
# 6) compute performance metrics
def _metrics(y_true, y_pred):
mse = mean_squared_error(y_true, y_pred)
return {
"R2": r2_score(y_true, y_pred),
"MAE": mean_absolute_error(y_true, y_pred),
"RMSE": np.sqrt(mse),
}
train_m = _metrics(y_train, model.predict(X_train))
test_m = _metrics(y_test, model.predict(X_test))
metrics_df = pd.DataFrame([{"split": "train", **train_m}, {"split": "test", **test_m}])
# 7) save the model
os.makedirs(out_dir, exist_ok=True)
model_file = os.path.join(out_dir, f"qsar_model_{fp_type}.pkl")
with open(model_file, "wb") as fout:
pickle.dump(model, fout)
print(f"Trained & saved QSAR model for '{fp_type}' → {model_file}")
return metrics_df
def predict_with_ci(model, X, confidence=0.95):
"""
Calculates predictions and confidence intervals for a RandomForestRegressor.
(Implementation is the same as in the previous answer)
"""
# Get predictions from each individual tree
tree_preds = np.array([tree.predict(X) for tree in model.estimators_])
# Calculate mean prediction
y_pred_mean = np.mean(tree_preds, axis=0)
# Calculate percentiles for confidence interval
alpha = (1.0 - confidence) / 2.0
lower_percentile = alpha * 100
upper_percentile = (1.0 - alpha) * 100
y_pred_lower = np.percentile(tree_preds, lower_percentile, axis=0)
y_pred_upper = np.percentile(tree_preds, upper_percentile, axis=0)
return y_pred_mean, y_pred_lower, y_pred_upper
# --- End of predict_with_ci definition ---
@op("LynxKite Graph Analytics", "Train QSAR2")
def build_qsar_model2(
df: pd.DataFrame,
*,
smiles_col: str,
target_col: str,
fp_type: str,
radius: int = 2,
n_bits: int = 2048,
test_size: float = 0.2,
random_state: int = 42,
out_dir: str = "Models",
confidence: float = 0.95,
):
"""
Train/save RandomForest QSAR model, returning the model and a results DataFrame.
The results DataFrame contains per-point data ('actual', 'predicted',
'lower_ci', 'upper_ci', 'split') AND repeated summary metrics for each
split ('split_R2', 'split_MAE', 'split_RMSE').
Parameters
----------
(Parameters are the same as before)
bundle : any
table_name : str
smiles_col : str
target_col : str
fp_type : str
radius : int
n_bits : int
test_size : float
random_state : int
out_dir : str
confidence : float, optional
Returns
-------
model : RandomForestRegressor
The trained QSAR model.
results_df : pandas.DataFrame
DataFrame containing columns: 'actual', 'predicted', 'lower_ci',
'upper_ci', 'split', 'split_R2', 'split_MAE', 'split_RMSE'.
The metric columns repeat the overall metric for the corresponding split.
"""
# Steps 1-5: Load data, split, featurize, split features, train model
# (Code is identical to previous versions up to model training)
# ... (load data, sanitize, split indices) ...
# df = bundle.dfs.get(table_name)
df = df.copy()
if df is None:
raise KeyError("Table not found")
df[target_col] = pd.to_numeric(df[target_col], errors="coerce")
df.dropna(subset=[target_col, smiles_col], inplace=True)
df["mol"] = df[smiles_col].apply(Chem.MolFromSmiles)
df = df[df["mol"].notnull()].reset_index(drop=True)
if df.empty:
raise ValueError("No valid molecules or targets")
indices = np.arange(len(df))
train_idx, test_idx = train_test_split(indices, test_size=test_size, random_state=random_state)
print(f"Featurizing using {fp_type}...")
fps = []
valid_indices = []
for i, mol in enumerate(df["mol"]):
try:
# ... (fp generation logic as before) ...
if fp_type == "ecfp":
bv = AllChem.GetMorganFingerprintAsBitVect(mol, radius, nBits=n_bits)
current_n_bits = n_bits
elif fp_type == "rdkit":
bv = Chem.RDKFingerprint(mol, fpSize=n_bits)
current_n_bits = n_bits
elif fp_type == "torsion":
bv = AllChem.GetHashedTopologicalTorsionFingerprintAsBitVect(mol, nBits=n_bits)
current_n_bits = n_bits
elif fp_type == "atompair":
bv = AllChem.GetHashedAtomPairFingerprintAsBitVect(mol, nBits=n_bits)
current_n_bits = n_bits
elif fp_type == "maccs":
bv = MACCSkeys.GenMACCSKeys(mol) # 167 bits
current_n_bits = 167
else:
raise ValueError(f"Unsupported fp type: '{fp_type}'")
arr = np.zeros((current_n_bits,), dtype=np.int8)
DataStructs.ConvertToNumpyArray(bv, arr)
fps.append(arr)
valid_indices.append(i)
except Exception as e:
print(f"Warning: Featurization failed index {i}. Skipping. Error: {e}")
continue
if not fps:
raise ValueError("No molecules featurized.")
X = np.vstack(fps)
df_filtered = df.iloc[valid_indices].reset_index(drop=True)
y = df_filtered[target_col].values
# original_indices_set = set(valid_indices)
train_idx_filtered = [
i for i, original_idx in enumerate(valid_indices) if original_idx in train_idx
]
test_idx_filtered = [
i for i, original_idx in enumerate(valid_indices) if original_idx in test_idx
]
X_train, y_train = X[train_idx_filtered], y[train_idx_filtered]
X_test, y_test = X[test_idx_filtered], y[test_idx_filtered]
if X_train.shape[0] == 0 or X_test.shape[0] == 0:
raise ValueError("Train or test split empty after filtering.")
print("Training RandomForestRegressor...")
model = RandomForestRegressor(random_state=random_state, n_jobs=-1)
model.fit(X_train, y_train)
# 6) Compute predictions and *summary* performance metrics
print("Calculating predictions and metrics...")
y_pred_train, lower_ci_train, upper_ci_train = predict_with_ci(model, X_train, confidence)
y_pred_test, lower_ci_test, upper_ci_test = predict_with_ci(model, X_test, confidence)
def _metrics(y_true, y_pred_mean):
# (Same helper function as before)
y_true = np.ravel(y_true)
y_pred_mean = np.ravel(y_pred_mean)
if len(y_true) == 0:
return {"R2": np.nan, "MAE": np.nan, "RMSE": np.nan}
mse = mean_squared_error(y_true, y_pred_mean)
return {
"R2": r2_score(y_true, y_pred_mean),
"MAE": mean_absolute_error(y_true, y_pred_mean),
"RMSE": np.sqrt(mse),
}
train_metrics_dict = _metrics(y_train, y_pred_train)
test_metrics_dict = _metrics(y_test, y_pred_test)
# 7) Create results DataFrames and ADD metrics columns
train_results = pd.DataFrame(
{
"actual": y_train,
"predicted": y_pred_train,
"lower_ci": lower_ci_train,
"upper_ci": upper_ci_train,
"split": "train",
}
)
# Add repeated metrics
for metric, value in train_metrics_dict.items():
train_results[f"split_{metric}"] = value
test_results = pd.DataFrame(
{
"actual": y_test,
"predicted": y_pred_test,
"lower_ci": lower_ci_test,
"upper_ci": upper_ci_test,
"split": "test",
}
)
# Add repeated metrics
for metric, value in test_metrics_dict.items():
test_results[f"split_{metric}"] = value
# Concatenate into the final DataFrame
results_df = pd.concat([train_results, test_results], ignore_index=True)
# 8) Save the model (same as before)
os.makedirs(out_dir, exist_ok=True)
model_file = os.path.join(out_dir, f"qsar_model_{fp_type}.pkl")
try:
with open(model_file, "wb") as fout:
pickle.dump(model, fout)
print(f"Trained & saved QSAR model for '{fp_type}' -> {model_file}")
except Exception as e:
print(f"Error saving model to {model_file}: {e}")
return results_df
@op("LynxKite Graph Analytics", "plot qsar", view="matplotlib")
def plot_qsar(results_df: pd.DataFrame):
"""
Plots actual vs. predicted values from a QSAR results DataFrame.
Requires a single positional argument: the results DataFrame. All other
parameters are optional keyword arguments. It extracts summary metrics
directly from columns ('split_R2', 'split_MAE', 'split_RMSE')
expected within the results_df.
"""
title = "QSAR Model Performance: Actual vs. Predicted"
xlabel = "Actual Values"
ylabel = "Predicted Values"
show_metrics = True
if not isinstance(results_df, pd.DataFrame):
raise TypeError(
"plot_qsar() missing 1 required positional argument: 'results_df' or the provided argument is not a pandas DataFrame."
)
required_cols = ["actual", "predicted", "lower_ci", "upper_ci", "split"]
if not all(col in results_df.columns for col in required_cols):
raise ValueError(f"Invalid 'results_df'. Must contain columns: {required_cols}")
metric_cols = ["split_R2", "split_MAE", "split_RMSE"]
metrics_available = all(col in results_df.columns for col in metric_cols)
if show_metrics and not metrics_available:
print(
f"Warning: Metrics display requested, but one or more metric columns ({metric_cols}) are missing in results_df."
)
# --- Prepare Data ---
train_data = results_df[results_df["split"] == "train"]
test_data = results_df[results_df["split"] == "test"]
can_plot_train = not train_data.empty
can_plot_test = not test_data.empty
if not can_plot_train and not can_plot_test:
print("Warning: Both training and test data subsets are empty. Cannot generate plot.")
return # Exit function early if no data
# --- Create Plot (Internal Figure/Axes) ---
fig, ax = plt.subplots(figsize=(8, 8))
# --- Plotting Logic ---
# (Draws scatter, error bars, line, grid, labels, title, legend on 'ax')
if can_plot_train:
train_error = [
train_data["predicted"] - train_data["lower_ci"],
train_data["upper_ci"] - train_data["predicted"],
]
ax.scatter(
train_data["actual"],
train_data["predicted"],
label="Train",
alpha=0.6,
s=30,
edgecolors="w",
linewidth=0.5,
)
ax.errorbar(
train_data["actual"],
train_data["predicted"],
yerr=train_error,
fmt="none",
ecolor="tab:blue",
label="_nolegend_",
capsize=0,
elinewidth=1,
)
if can_plot_test:
test_error = [
test_data["predicted"] - test_data["lower_ci"],
test_data["upper_ci"] - test_data["predicted"],
]
ax.scatter(
test_data["actual"],
test_data["predicted"],
label="Test",
alpha=0.8,
s=40,
edgecolors="w",
linewidth=0.5,
)
ax.errorbar(
test_data["actual"],
test_data["predicted"],
yerr=test_error,
fmt="none",
ecolor="tab:orange",
label="_nolegend_",
capsize=0,
elinewidth=1,
)
all_actual = results_df["actual"].dropna()
all_pred_ci = pd.concat(
[results_df["predicted"], results_df["lower_ci"], results_df["upper_ci"]]
).dropna()
all_values = pd.concat([all_actual, all_pred_ci]).dropna()
if all_values.empty:
min_val, max_val = 0, 1
else:
min_val, max_val = all_values.min(), all_values.max()
if min_val == max_val:
min_val -= 0.5
max_val += 0.5
padding = (max_val - min_val) * 0.05
min_val -= padding
max_val += padding
ax.plot([min_val, max_val], [min_val, max_val], "k--", alpha=0.7, lw=1, label="y=x")
ax.set_xlim(min_val, max_val)
ax.set_ylim(min_val, max_val)
ax.set_aspect("equal", adjustable="box")
ax.grid(True, linestyle=":", alpha=0.6)
ax.set_xlabel(xlabel)
ax.set_ylabel(ylabel)
ax.set_title(title)
ax.legend(loc="lower right")
# --- Display Metrics Text ---
if show_metrics and metrics_available:
# (Logic for extracting and formatting metrics text remains the same)
metrics_text = ""
try:
if can_plot_train:
train_metrics = train_data[metric_cols].iloc[0]
r2_tr = (
f"{train_metrics['split_R2']:.3f}"
if pd.notna(train_metrics["split_R2"])
else "N/A"
)
mae_tr = (
f"{train_metrics['split_MAE']:.3f}"
if pd.notna(train_metrics["split_MAE"])
else "N/A"
)
rmse_tr = (
f"{train_metrics['split_RMSE']:.3f}"
if pd.notna(train_metrics["split_RMSE"])
else "N/A"
)
metrics_text += f"Train: $R^2$={r2_tr}, MAE={mae_tr}, RMSE={rmse_tr}\n"
else:
metrics_text += "Train: N/A (No Data)\n"
if can_plot_test:
test_metrics = test_data[metric_cols].iloc[0]
r2_te = (
f"{test_metrics['split_R2']:.3f}"
if pd.notna(test_metrics["split_R2"])
else "N/A"
)
mae_te = (
f"{test_metrics['split_MAE']:.3f}"
if pd.notna(test_metrics["split_MAE"])
else "N/A"
)
rmse_te = (
f"{test_metrics['split_RMSE']:.3f}"
if pd.notna(test_metrics["split_RMSE"])
else "N/A"
)
metrics_text += f"Test: $R^2$={r2_te}, MAE={mae_te}, RMSE={rmse_te}"
else:
metrics_text += "Test: N/A (No Data)"
if metrics_text:
ax.text(
0.05,
0.95,
metrics_text.strip(),
transform=ax.transAxes,
fontsize=9,
verticalalignment="top",
bbox=dict(boxstyle="round,pad=0.5", fc="white", alpha=0.8),
)
except Exception as e:
print(f"An error occurred during metrics display: {e}")
ax.text(
0.05,
0.95,
"Error displaying metrics",
transform=ax.transAxes,
fontsize=9,
color="red",
verticalalignment="top",
bbox=dict(boxstyle="round,pad=0.5", fc="white", alpha=0.8),
)
@op("LynxKite Graph Analytics", "plot qsar2", view="matplotlib")
def plot_qsar2(results_df: pd.DataFrame):
"""
Plots actual vs. predicted values resembling the example image.
Includes separate markers for train/test, y=x line, and parallel dashed
error bands based on test set RMSE (optional). Does NOT use per-point CIs.
Handles displaying the plot via plt.show() or saving it to a file
based on the `save_path` parameter. THIS FUNCTION DOES NOT RETURN ANY VALUE.
Parameters
----------
results_df : pd.DataFrame
Mandatory input DataFrame. Must contain: 'actual', 'predicted', 'split'.
Should also contain 'split_RMSE' column for error bands and metrics display.
title : str, optional
xlabel : str, optional
ylabel : str, optional
rmse_multiplier_for_bands : float or None, optional
Determines the width of the dashed error bands (multiplier * test_RMSE).
Set to None to disable bands. Default is 1.0.
show_metrics : bool, optional
Whether to display R2/MAE/RMSE text (requires metric columns). Default is True.
save_path : str, optional
If provided, saves plot to this path. If None (default), displays plot.
Raises
------
ValueError / TypeError : For invalid inputs.
"""
COLOR_TRAIN = "royalblue"
COLOR_TEST = "darkorange" # Changed from red for potentially better contrast/appeal
COLOR_PERFECT = "black"
COLOR_BANDS = "dimgrey" # Less prominent than the perfect line
COLOR_GRID = "lightgrey"
title = "QSAR Model Performance: Actual vs. Predicted"
xlabel = "Actual Values"
ylabel = "Predicted Values"
# ci_alpha = 0.2
show_metrics = True
rmse_multiplier_for_bands = 1.0
# --- Input Validation ---
if not isinstance(results_df, pd.DataFrame):
raise TypeError("Input must be a pandas DataFrame.")
required_cols = ["actual", "predicted", "split"]
if not all(col in results_df.columns for col in required_cols):
raise ValueError(f"DataFrame must contain columns: {required_cols}")
metric_cols = ["split_R2", "split_MAE", "split_RMSE"]
metrics_available = all(col in results_df.columns for col in metric_cols)
bands_possible = rmse_multiplier_for_bands is not None and "split_RMSE" in results_df.columns
if show_metrics and not metrics_available:
print(
f"Warning: Metrics display requested, but one or more metric columns ({metric_cols}) are missing."
)
if rmse_multiplier_for_bands is not None and "split_RMSE" not in results_df.columns:
print("Warning: Error bands requested, but 'split_RMSE' column is missing.")
bands_possible = False
# --- Prepare Data ---
train_data = results_df[results_df["split"] == "train"].copy()
test_data = results_df[results_df["split"] == "test"].copy()
can_plot_train = not train_data.empty
can_plot_test = not test_data.empty
if not can_plot_train and not can_plot_test:
print("Warning: Both training and test data subsets are empty. Cannot generate plot.")
return
# --- Create Plot with Style ---
plt.style.use("seaborn-v0_8-whitegrid") # Use a cleaner base style
fig, ax = plt.subplots(figsize=(8, 8)) # Slightly larger figure
# --- Plotting Logic ---
# Scatter plots with enhanced style
common_scatter_kws = {"s": 45, "alpha": 0.75, "edgecolor": "black", "linewidth": 0.5}
if can_plot_train:
ax.scatter(
train_data["actual"],
train_data["predicted"],
label="Training set",
marker="o",
color=COLOR_TRAIN,
**common_scatter_kws,
) # Blue circles
if can_plot_test:
ax.scatter(
test_data["actual"],
test_data["predicted"],
label="Test set",
marker="o",
color=COLOR_TEST,
**common_scatter_kws,
) # Orange circles
# Determine plot limits
# (Using the same logic as before to calculate min_val, max_val)
all_actual = results_df["actual"].dropna()
all_pred = results_df["predicted"].dropna()
all_values = pd.concat([all_actual, all_pred]).dropna()
if all_values.empty:
min_val, max_val = 0, 1
else:
min_val, max_val = all_values.min(), all_values.max()
if min_val == max_val:
min_val -= 0.5
max_val += 0.5
data_range = max_val - min_val
if data_range == 0:
data_range = 1.0
padding = data_range * 0.10
min_val -= padding
max_val += padding
# Plot y=x line (Solid Black, slightly thicker)
ax.plot(
[min_val, max_val],
[min_val, max_val],
color=COLOR_PERFECT,
linestyle="-",
linewidth=1.5,
alpha=0.9,
label="_nolegend_",
)
# Plot Error Bands based on Test RMSE (subtler style)
rmse_test = np.nan
if bands_possible and can_plot_test:
try:
rmse_test = test_data["split_RMSE"].dropna().iloc[0]
if pd.notna(rmse_test) and rmse_test >= 0:
margin = rmse_multiplier_for_bands * rmse_test
band_label = (
f"$\pm {rmse_multiplier_for_bands}\,$RMSE"
if rmse_multiplier_for_bands == 1
else f"$\pm {rmse_multiplier_for_bands}\,$RMSE"
)
ax.plot(
[min_val, max_val],
[min_val + margin, max_val + margin],
color=COLOR_BANDS,
linestyle="--",
linewidth=1.0,
alpha=0.7,
label=band_label,
) # Grey dashed
ax.plot(
[min_val, max_val],
[min_val - margin, max_val - margin],
color=COLOR_BANDS,
linestyle="--",
linewidth=1.0,
alpha=0.7,
label="_nolegend_",
) # Grey dashed
# else: print("Warning: Could not plot error bands (Invalid Test RMSE).") # Optionally silent
except Exception as e:
print(f"Warning: Could not plot error bands: {e}")
# Set limits and aspect ratio
ax.set_xlim(min_val, max_val)
ax.set_ylim(min_val, max_val)
ax.set_aspect("equal", adjustable="box")
# ADD BACK Grid (Subtle Style)
ax.grid(True, which="both", linestyle=":", linewidth=0.7, color=COLOR_GRID, alpha=0.7)
# Ensure grid is behind data points
ax.set_axisbelow(True)
# Set Labels and Title (using specified arguments)
ax.set_xlabel(xlabel, fontsize=12)
ax.set_ylabel(ylabel, fontsize=12)
ax.set_title(title, fontsize=15, pad=15, weight="semibold") # Slightly larger title
# Enhance Legend
ax.legend(loc="best", frameon=True, framealpha=0.85, fontsize=10, shadow=False)
# --- Display Metrics Text (Optional) ---
if show_metrics and metrics_available:
# (Logic for extracting and formatting metrics text remains the same)
metrics_text = ""
try:
if can_plot_train:
train_metrics = train_data[metric_cols].dropna().iloc[0] # Ensure using valid row
r2_tr = f"{train_metrics['split_R2']:.3f}"
mae_tr = f"{train_metrics['split_MAE']:.3f}"
rmse_tr = f"{train_metrics['split_RMSE']:.3f}"
metrics_text += f"Train: $R^2$={r2_tr}, MAE={mae_tr}, RMSE={rmse_tr}\n"
else:
metrics_text += "Train: N/A\n"
if can_plot_test:
test_metrics = test_data[metric_cols].dropna().iloc[0] # Ensure using valid row
r2_te = f"{test_metrics['split_R2']:.3f}"
mae_te = f"{test_metrics['split_MAE']:.3f}"
rmse_te = f"{test_metrics['split_RMSE']:.3f}"
metrics_text += f"Test: $R^2$={r2_te}, MAE={mae_te}, RMSE={rmse_te}"
else:
metrics_text += "Test: N/A"
if metrics_text:
ax.text(
0.05,
0.95,
metrics_text.strip(),
transform=ax.transAxes,
fontsize=9,
verticalalignment="top",
bbox=dict(boxstyle="round,pad=0.3", fc="white", alpha=0.7),
) # Adjusted box slightly
except Exception as e:
print(f"An error occurred during metrics display: {e}")
|