Spaces:
Running
Running
File size: 10,255 Bytes
2af956d 994b457 ea3f857 2af956d c577568 2af956d c577568 2af956d c577568 2af956d f141fec 2af956d a112474 2af956d c577568 2af956d f141fec 2af956d 8f44c91 2af956d 8f44c91 2594c74 8f44c91 a112474 2af956d f6b2668 2af956d b77abc6 2af956d b77abc6 114fd1c b77abc6 2af956d f6b2668 2af956d 1ca8050 78639e2 1ca8050 2af956d ea3f857 1ca8050 2af956d 1ca8050 ea3f857 1ca8050 2af956d ea3f857 994b457 8fed4c9 ea3f857 994b457 1ca8050 ea3f857 b77abc6 ea3f857 1ca8050 ea3f857 47e2956 ea3f857 8fed4c9 114fd1c ea3f857 8fed4c9 ea3f857 8ec5a6c 81cdf1a 8ec5a6c 81cdf1a ea3f857 64e10f9 ea3f857 8fed4c9 47e2956 994b457 5203f05 47e2956 64e10f9 47e2956 2594c74 1ca8050 ea3f857 2af956d 2594c74 2af956d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 |
"""Graph analytics executor and data types."""
import inspect
import os
from lynxkite.core import ops, workspace
import dataclasses
import functools
import networkx as nx
import pandas as pd
import polars as pl
import traceback
import typing
ENV = "LynxKite Graph Analytics"
@dataclasses.dataclass
class RelationDefinition:
"""
Defines a set of edges.
Attributes:
df: The name of the DataFrame that contains the edges.
source_column: The column in the edge DataFrame that contains the source node ID.
target_column: The column in the edge DataFrame that contains the target node ID.
source_table: The name of the DataFrame that contains the source nodes.
target_table: The name of the DataFrame that contains the target nodes.
source_key: The column in the source table that contains the node ID.
target_key: The column in the target table that contains the node ID.
name: Descriptive name for the relation.
"""
df: str
source_column: str
target_column: str
source_table: str
target_table: str
source_key: str
target_key: str
name: str | None = None
@dataclasses.dataclass
class Bundle:
"""A collection of DataFrames and other data.
Can efficiently represent a knowledge graph (homogeneous or heterogeneous) or tabular data.
By convention, if it contains a single DataFrame, it is called `df`.
If it contains a homogeneous graph, it is represented as two DataFrames called `nodes` and
`edges`.
Attributes:
dfs: Named DataFrames.
relations: Metadata that describes the roles of each DataFrame.
Can be empty, if the bundle is just one or more DataFrames.
other: Other data, such as a trained model.
"""
dfs: dict[str, pd.DataFrame] = dataclasses.field(default_factory=dict)
relations: list[RelationDefinition] = dataclasses.field(default_factory=list)
other: dict[str, typing.Any] = dataclasses.field(default_factory=dict)
@classmethod
def from_nx(cls, graph: nx.Graph):
edges = nx.to_pandas_edgelist(graph)
d = dict(graph.nodes(data=True))
nodes = pd.DataFrame(d.values(), index=d.keys())
nodes["id"] = nodes.index
if "index" in nodes.columns:
nodes.drop(columns=["index"], inplace=True)
return cls(
dfs={"edges": edges, "nodes": nodes},
relations=[
RelationDefinition(
df="edges",
source_column="source",
target_column="target",
source_table="nodes",
target_table="nodes",
source_key="id",
target_key="id",
)
],
)
@classmethod
def from_df(cls, df: pd.DataFrame):
return cls(dfs={"df": df})
def to_nx(self):
# TODO: Use relations.
graph = nx.DiGraph()
if "nodes" in self.dfs:
df = self.dfs["nodes"]
if df.index.name != "id":
df = df.set_index("id")
graph.add_nodes_from(df.to_dict("index").items())
if "edges" in self.dfs:
edges = self.dfs["edges"]
graph.add_edges_from(
[
(
e["source"],
e["target"],
{k: e[k] for k in edges.columns if k not in ["source", "target"]},
)
for e in edges.to_records()
]
)
return graph
def copy(self):
"""
Returns a shallow copy of the bundle. The Bundle and its containers are new, but
the DataFrames and RelationDefinitions are shared. (The contents of `other` are also shared.)
"""
return Bundle(
dfs=dict(self.dfs),
relations=list(self.relations),
other=dict(self.other),
)
def to_dict(self, limit: int = 100):
"""JSON-serializable representation of the bundle, including some data."""
return {
"dataframes": {
name: {
"columns": [str(c) for c in df.columns],
"data": df_for_frontend(df, limit).values.tolist(),
}
for name, df in self.dfs.items()
},
"relations": [dataclasses.asdict(relation) for relation in self.relations],
"other": {k: str(v) for k, v in self.other.items()},
}
def metadata(self):
"""JSON-serializable information about the bundle, metadata only."""
return {
"dataframes": {
name: {
"columns": sorted(str(c) for c in df.columns),
}
for name, df in self.dfs.items()
},
"relations": [dataclasses.asdict(relation) for relation in self.relations],
"other": {k: getattr(v, "metadata", lambda: {})() for k, v in self.other.items()},
}
def nx_node_attribute_func(name):
"""Decorator for wrapping a function that adds a NetworkX node attribute."""
def decorator(func):
@functools.wraps(func)
def wrapper(graph: nx.Graph, **kwargs):
graph = graph.copy()
attr = func(graph, **kwargs)
nx.set_node_attributes(graph, attr, name)
return graph
return wrapper
return decorator
def disambiguate_edges(ws: workspace.Workspace):
"""If an input plug is connected to multiple edges, keep only the last edge."""
catalog = ops.CATALOGS[ws.env]
nodes = {node.id: node for node in ws.nodes}
seen = set()
for edge in reversed(ws.edges):
dst_node = nodes[edge.target]
op = catalog.get(dst_node.data.title)
if op.get_input(edge.targetHandle).type == list[Bundle]:
# Takes multiple bundles as an input. No need to disambiguate.
continue
if (edge.target, edge.targetHandle) in seen:
i = ws.edges.index(edge)
del ws.edges[i]
if hasattr(ws, "_crdt"):
del ws._crdt["edges"][i]
seen.add((edge.target, edge.targetHandle))
# Outputs are tracked by node ID and output ID.
Outputs = dict[tuple[str, str], typing.Any]
@ops.register_executor(ENV)
async def execute(ws: workspace.Workspace):
catalog = ops.CATALOGS[ws.env]
disambiguate_edges(ws)
outputs: Outputs = {}
nodes = {node.id: node for node in ws.nodes}
todo = set(nodes.keys())
progress = True
while progress:
progress = False
for id in list(todo):
node = nodes[id]
inputs_done = [
(edge.source, edge.sourceHandle) in outputs
for edge in ws.edges
if edge.target == id
]
if all(inputs_done):
# All inputs for this node are ready, we can compute the output.
todo.remove(id)
progress = True
await _execute_node(node, ws, catalog, outputs)
return outputs
async def await_if_needed(obj):
if inspect.isawaitable(obj):
obj = await obj
return obj
async def _execute_node(
node: workspace.WorkspaceNode, ws: workspace.Workspace, catalog: ops.Catalog, outputs: Outputs
):
params = {**node.data.params}
op = catalog.get(node.data.title)
if not op:
node.publish_error("Operation not found in catalog")
return
node.publish_started()
# TODO: Handle multi-inputs.
input_map = {
edge.targetHandle: outputs[edge.source, edge.sourceHandle]
for edge in ws.edges
if edge.target == node.id
}
# Convert inputs types to match operation signature.
try:
inputs = []
missing = []
for p in op.inputs:
if p.name not in input_map:
opt_type = ops.get_optional_type(p.type)
if opt_type is not None:
inputs.append(None)
else:
missing.append(p.name)
continue
x = input_map[p.name]
if p.type == nx.Graph:
if isinstance(x, Bundle):
x = x.to_nx()
assert isinstance(x, nx.Graph), f"Input must be a graph. Got: {x}"
elif p.type == Bundle:
if isinstance(x, nx.Graph):
x = Bundle.from_nx(x)
elif isinstance(x, pd.DataFrame):
x = Bundle.from_df(x)
assert isinstance(x, Bundle), f"Input must be a graph or dataframe. Got: {x}"
inputs.append(x)
except Exception as e:
if not os.environ.get("LYNXKITE_SUPPRESS_OP_ERRORS"):
traceback.print_exc()
node.publish_error(e)
return
if missing:
node.publish_error(f"Missing input: {', '.join(missing)}")
return
# Execute op.
try:
result = op(*inputs, **params)
result.output = await await_if_needed(result.output)
result.display = await await_if_needed(result.display)
except Exception as e:
if not os.environ.get("LYNXKITE_SUPPRESS_OP_ERRORS"):
traceback.print_exc()
result = ops.Result(error=str(e))
result.input_metadata = [_get_metadata(i) for i in inputs]
if isinstance(result.output, dict):
for k, v in result.output.items():
outputs[node.id, k] = v
elif result.output is not None:
[k] = op.outputs
outputs[node.id, k.name] = result.output
node.publish_result(result)
def _get_metadata(x):
if hasattr(x, "metadata"):
return x.metadata()
return {}
def df_for_frontend(df: pd.DataFrame, limit: int) -> pd.DataFrame:
"""Returns a DataFrame with values that are safe to send to the frontend."""
df = df[:limit]
if isinstance(df, pl.LazyFrame):
df = df.collect()
if isinstance(df, pl.DataFrame):
df = df.to_pandas()
# Convert non-numeric columns to strings.
for c in df.columns:
if not pd.api.types.is_numeric_dtype(df[c]):
df[c] = df[c].astype(str)
return df
|