darabos's picture
Non-blocking training.
994b457
raw
history blame
14.5 kB
"""Graph analytics operations."""
import enum
import os
import pathlib
import fsspec
from lynxkite.core import ops
from collections import deque
from tqdm import tqdm
from . import core, pytorch_model_ops
from lynxkite.core import workspace
import grandcypher
import joblib
import matplotlib
import networkx as nx
import pandas as pd
import polars as pl
import json
mem = joblib.Memory(".joblib-cache")
op = ops.op_registration(core.ENV)
class FileFormat(enum.StrEnum):
csv = "csv"
parquet = "parquet"
json = "json"
excel = "excel"
@op(
"Import file",
params={
"file_format": ops.ParameterGroup(
name="file_format",
selector=ops.Parameter(name="file_format", type=FileFormat, default=FileFormat.csv),
groups={
"csv": [
ops.Parameter.basic("columns", type=str, default="<from file>"),
ops.Parameter.basic("separator", type=str, default="<auto>"),
],
"parquet": [],
"json": [],
"excel": [ops.Parameter.basic("sheet_name", type=str, default="Sheet1")],
},
default=FileFormat.csv,
),
},
)
def import_file(
*, file_path: str, table_name: str, file_format: FileFormat, **kwargs
) -> core.Bundle:
"""Read the contents of the a file into a `Bundle`.
Args:
file_path: Path to the file to import.
table_name: Name to use for identifying the table in the bundle.
file_format: Format of the file. Has to be one of the values in the `FileFormat` enum.
Returns:
Bundle: Bundle with a single table with the contents of the file.
"""
if file_format == "csv":
names = kwargs.pop("columns", "<from file>")
names = pd.api.extensions.no_default if names == "<from file>" else names.split(",")
sep = kwargs.pop("separator", "<auto>")
sep = pd.api.extensions.no_default if sep == "<auto>" else sep
df = pd.read_csv(file_path, names=names, sep=sep, **kwargs)
elif file_format == "json":
df = pd.read_json(file_path, **kwargs)
elif file_format == "parquet":
df = pd.read_parquet(file_path, **kwargs)
elif file_format == "excel":
df = pd.read_excel(file_path, **kwargs)
else:
df = ValueError(f"Unsupported file format: {file_format}")
return core.Bundle(dfs={table_name: df})
@op("Import Parquet")
def import_parquet(*, filename: str):
"""Imports a Parquet file."""
return pd.read_parquet(filename)
@op("Import CSV")
@mem.cache
def import_csv(*, filename: str, columns: str = "<from file>", separator: str = "<auto>"):
"""Imports a CSV file."""
return pd.read_csv(
filename,
names=pd.api.extensions.no_default if columns == "<from file>" else columns.split(","),
sep=pd.api.extensions.no_default if separator == "<auto>" else separator,
)
@op("Import GraphML")
@mem.cache
def import_graphml(*, filename: str):
"""Imports a GraphML file."""
files = fsspec.open_files(filename, compression="infer")
for f in files:
if ".graphml" in f.path:
with f as f:
return nx.read_graphml(f)
raise ValueError(f"No .graphml file found at {filename}")
@op("Graph from OSM")
@mem.cache
def import_osm(*, location: str):
import osmnx as ox
return ox.graph.graph_from_place(location, network_type="drive")
@op("Discard loop edges")
def discard_loop_edges(graph: nx.Graph):
graph = graph.copy()
graph.remove_edges_from(nx.selfloop_edges(graph))
return graph
@op("Discard parallel edges")
def discard_parallel_edges(graph: nx.Graph):
return nx.DiGraph(graph)
@op("SQL")
def sql(bundle: core.Bundle, *, query: ops.LongStr, save_as: str = "result"):
"""Run a SQL query on the DataFrames in the bundle. Save the results as a new DataFrame."""
bundle = bundle.copy()
if os.environ.get("NX_CUGRAPH_AUTOCONFIG", "").strip().lower() == "true":
with pl.Config() as cfg:
cfg.set_verbose(True)
res = pl.SQLContext(bundle.dfs).execute(query).collect(engine="gpu").to_pandas()
# TODO: Currently `collect()` moves the data from cuDF to Polars. Then we convert it to Pandas,
# which (hopefully) puts it back into cuDF. Hopefully we will be able to keep it in cuDF.
else:
res = pl.SQLContext(bundle.dfs).execute(query).collect().to_pandas()
bundle.dfs[save_as] = res
return bundle
@op("Cypher")
def cypher(bundle: core.Bundle, *, query: ops.LongStr, save_as: str = "result"):
"""Run a Cypher query on the graph in the bundle. Save the results as a new DataFrame."""
bundle = bundle.copy()
graph = bundle.to_nx()
res = grandcypher.GrandCypher(graph).run(query)
bundle.dfs[save_as] = pd.DataFrame(res)
return bundle
@op("Organize")
def organize(bundle: list[core.Bundle], *, code: ops.LongStr) -> core.Bundle:
"""Lets you rename/copy/delete DataFrames, and modify relations.
TODO: Merge this with "Create graph".
"""
bundle = bundle.copy()
exec(code, globals(), {"bundle": bundle})
return bundle
@op("Sample graph")
def sample_graph(graph: nx.Graph, *, nodes: int = 100):
"""Takes a (preferably connected) subgraph."""
sample = set()
to_expand = deque([next(graph.nodes.keys().__iter__())])
while to_expand and len(sample) < nodes:
node = to_expand.pop()
for n in graph.neighbors(node):
if n not in sample:
sample.add(n)
to_expand.append(n)
if len(sample) == nodes:
break
return nx.Graph(graph.subgraph(sample))
def _map_color(value):
if pd.api.types.is_numeric_dtype(value):
cmap = matplotlib.cm.get_cmap("viridis")
value = (value - value.min()) / (value.max() - value.min())
rgba = cmap(value.values)
return [
"#{:02x}{:02x}{:02x}".format(int(r * 255), int(g * 255), int(b * 255))
for r, g, b in rgba[:, :3]
]
else:
cmap = matplotlib.cm.get_cmap("Paired")
categories = pd.Index(value.unique())
colors = cmap.colors[: len(categories)]
return [
"#{:02x}{:02x}{:02x}".format(int(r * 255), int(g * 255), int(b * 255))
for r, g, b in [colors[min(len(colors) - 1, categories.get_loc(v))] for v in value]
]
@op("Visualize graph", view="visualization")
def visualize_graph(
graph: core.Bundle,
*,
color_nodes_by: ops.NodeAttribute = None,
label_by: ops.NodeAttribute = None,
color_edges_by: ops.EdgeAttribute = None,
):
nodes = core.df_for_frontend(graph.dfs["nodes"], 10_000)
if color_nodes_by:
nodes["color"] = _map_color(nodes[color_nodes_by])
for cols in ["x y", "long lat"]:
x, y = cols.split()
if (
x in nodes.columns
and nodes[x].dtype == "float64"
and y in nodes.columns
and nodes[y].dtype == "float64"
):
cx, cy = nodes[x].mean(), nodes[y].mean()
dx, dy = nodes[x].std(), nodes[y].std()
# Scale up to avoid float precision issues and because eCharts omits short edges.
scale_x = 100 / max(dx, dy)
scale_y = scale_x
if y == "lat":
scale_y *= -1
pos = {
node_id: ((row[x] - cx) * scale_x, (row[y] - cy) * scale_y)
for node_id, row in nodes.iterrows()
}
curveness = 0 # Street maps are better with straight streets.
break
else:
pos = nx.spring_layout(graph.to_nx(), iterations=max(1, int(10000 / len(nodes))))
curveness = 0.3
nodes = nodes.to_records()
edges = core.df_for_frontend(graph.dfs["edges"].drop_duplicates(["source", "target"]), 10_000)
if color_edges_by:
edges["color"] = _map_color(edges[color_edges_by])
edges = edges.to_records()
v = {
"animationDuration": 500,
"animationEasingUpdate": "quinticInOut",
"tooltip": {"show": True},
"series": [
{
"type": "graph",
# Mouse zoom/panning is disabled for now. It interacts badly with ReactFlow.
# "roam": True,
"lineStyle": {
"color": "gray",
"curveness": curveness,
},
"emphasis": {
"focus": "adjacency",
"lineStyle": {
"width": 10,
},
},
"label": {"position": "top", "formatter": "{b}"},
"data": [
{
"id": str(n.id),
"x": float(pos[n.id][0]),
"y": float(pos[n.id][1]),
# Adjust node size to cover the same area no matter how many nodes there are.
"symbolSize": 50 / len(nodes) ** 0.5,
"itemStyle": {"color": n.color} if color_nodes_by else {},
"label": {"show": label_by is not None},
"name": str(getattr(n, label_by, "")) if label_by else None,
"value": str(getattr(n, color_nodes_by, "")) if color_nodes_by else None,
}
for n in nodes
],
"links": [
{
"source": str(r.source),
"target": str(r.target),
"lineStyle": {"color": r.color} if color_edges_by else {},
"value": str(getattr(r, color_edges_by, "")) if color_edges_by else None,
}
for r in edges
],
},
],
}
return v
@op("View tables", view="table_view")
def view_tables(bundle: core.Bundle, *, limit: int = 100):
return bundle.to_dict(limit=limit)
@op(
"Create graph",
view="graph_creation_view",
outputs=["output"],
)
def create_graph(bundle: core.Bundle, *, relations: str = None) -> core.Bundle:
"""Replace relations of the given bundle
relations is a stringified JSON, instead of a dict, because complex Yjs types (arrays, maps)
are not currently supported in the UI.
Args:
bundle: Bundle to modify
relations (str, optional): Set of relations to set for the bundle. The parameter
should be a JSON object where the keys are relation names and the values are
a dictionary representation of a `RelationDefinition`.
Defaults to None.
Returns:
Bundle: The input bundle with the new relations set.
"""
bundle = bundle.copy()
if not (relations is None or relations.strip() == ""):
bundle.relations = [core.RelationDefinition(**r) for r in json.loads(relations).values()]
return ops.Result(output=bundle, display=bundle.to_dict(limit=100))
def load_ws(model_workspace: str):
cwd = pathlib.Path()
path = cwd / model_workspace
assert path.is_relative_to(cwd)
assert path.exists(), f"Workspace {path} does not exist"
ws = workspace.load(path)
return ws
@op("Biomedical foundation graph (PLACEHOLDER)")
def biomedical_foundation_graph(*, filter_nodes: str):
"""Loads the gigantic Lynx-maintained knowledge graph. Includes drugs, diseases, genes, proteins, etc."""
return None
@op("Define model")
def define_model(
bundle: core.Bundle,
*,
model_workspace: str,
save_as: str = "model",
):
"""Trains the selected model on the selected dataset. Most training parameters are set in the model definition."""
assert model_workspace, "Model workspace is unset."
ws = load_ws(model_workspace)
# Build the model without inputs, to get its interface.
m = pytorch_model_ops.build_model(ws)
m.source_workspace = model_workspace
bundle = bundle.copy()
bundle.other[save_as] = m
return bundle
# These contain the same mapping, but they get different UIs.
# For inputs, you select existing columns. For outputs, you can create new columns.
class ModelInferenceInputMapping(pytorch_model_ops.ModelMapping):
pass
class ModelTrainingInputMapping(pytorch_model_ops.ModelMapping):
pass
class ModelOutputMapping(pytorch_model_ops.ModelMapping):
pass
@op("Train model")
@ops.slow
def train_model(
bundle: core.Bundle,
*,
model_name: str = "model",
input_mapping: ModelTrainingInputMapping,
epochs: int = 1,
):
"""Trains the selected model on the selected dataset. Most training parameters are set in the model definition."""
m = bundle.other[model_name].copy()
inputs = pytorch_model_ops.to_tensors(bundle, input_mapping)
t = tqdm(range(epochs), desc="Training model")
losses = []
for _ in t:
loss = m.train(inputs)
t.set_postfix({"loss": loss})
losses.append(loss)
m.trained = True
bundle = bundle.copy()
bundle.other[model_name] = m
return bundle
@op("Model inference")
@ops.slow
def model_inference(
bundle: core.Bundle,
*,
model_name: str = "model",
input_mapping: ModelInferenceInputMapping,
output_mapping: ModelOutputMapping,
):
"""Executes a trained model."""
if input_mapping is None or output_mapping is None:
return ops.Result(bundle, error="Mapping is unset.")
m = bundle.other[model_name]
assert m.trained, "The model is not trained."
inputs = pytorch_model_ops.to_tensors(bundle, input_mapping)
outputs = m.inference(inputs)
bundle = bundle.copy()
copied = set()
for k, v in output_mapping.map.items():
if not v.df or not v.column:
continue
if v.df not in copied:
bundle.dfs[v.df] = bundle.dfs[v.df].copy()
copied.add(v.df)
bundle.dfs[v.df][v.column] = outputs[k].detach().numpy().tolist()
return bundle
@op("Train/test split")
def train_test_split(bundle: core.Bundle, *, table_name: str, test_ratio: float = 0.1):
"""Splits a dataframe in the bundle into separate "_train" and "_test" dataframes."""
df = bundle.dfs[table_name]
test = df.sample(frac=test_ratio)
train = df.drop(test.index)
bundle = bundle.copy()
bundle.dfs[f"{table_name}_train"] = train
bundle.dfs[f"{table_name}_test"] = test
return bundle