darabos's picture
Do not track tensor shapes. Much simpler!
16e9ba6
raw
history blame
17.1 kB
"""Boxes for defining PyTorch models."""
import copy
import enum
import graphlib
import pydantic
from lynxkite.core import ops, workspace
from lynxkite.core.ops import Parameter as P
import torch
import torch_geometric.nn as pyg_nn
import dataclasses
from . import core
ENV = "PyTorch model"
def op(name, **kwargs):
_op = ops.op(ENV, name, **kwargs)
def decorator(func):
_op(func)
op = func.__op__
for p in op.inputs.values():
p.position = "bottom"
for p in op.outputs.values():
p.position = "top"
return func
return decorator
def reg(name, inputs=[], outputs=None, params=[]):
if outputs is None:
outputs = inputs
return ops.register_passive_op(
ENV,
name,
inputs=[ops.Input(name=name, position="bottom", type="tensor") for name in inputs],
outputs=[ops.Output(name=name, position="top", type="tensor") for name in outputs],
params=params,
)
reg("Input: tensor", outputs=["output"], params=[P.basic("name")])
reg("Input: graph edges", outputs=["edges"])
reg("Input: sequential", outputs=["y"])
reg("LSTM", inputs=["x", "h"], outputs=["x", "h"])
reg(
"Neural ODE",
inputs=["x"],
params=[
P.basic("relative_tolerance"),
P.basic("absolute_tolerance"),
P.options(
"method",
[
"dopri8",
"dopri5",
"bosh3",
"fehlberg2",
"adaptive_heun",
"euler",
"midpoint",
"rk4",
"explicit_adams",
"implicit_adams",
],
),
],
)
reg("Attention", inputs=["q", "k", "v"], outputs=["x", "weights"])
reg("LayerNorm", inputs=["x"])
reg("Dropout", inputs=["x"], params=[P.basic("p", 0.5)])
@op("Linear")
def linear(x, *, output_dim=1024):
return pyg_nn.Linear(-1, output_dim)
class ActivationTypes(enum.Enum):
ReLU = "ReLU"
Leaky_ReLU = "Leaky ReLU"
Tanh = "Tanh"
Mish = "Mish"
@op("Activation")
def activation(x, *, type: ActivationTypes = ActivationTypes.ReLU):
return getattr(torch.nn.functional, type.name.lower().replace(" ", "_"))
@op("MSE loss")
def mse_loss(x, y):
return torch.nn.functional.mse_loss
reg("Softmax", inputs=["x"])
reg(
"Graph conv",
inputs=["x", "edges"],
outputs=["x"],
params=[P.options("type", ["GCNConv", "GATConv", "GATv2Conv", "SAGEConv"])],
)
reg("Concatenate", inputs=["a", "b"], outputs=["x"])
reg("Add", inputs=["a", "b"], outputs=["x"])
reg("Subtract", inputs=["a", "b"], outputs=["x"])
reg("Multiply", inputs=["a", "b"], outputs=["x"])
reg("Triplet margin loss", inputs=["x", "x_pos", "x_neg"], outputs=["loss"])
reg("Cross-entropy loss", inputs=["x", "y"], outputs=["loss"])
reg(
"Optimizer",
inputs=["loss"],
outputs=[],
params=[
P.options(
"type",
[
"AdamW",
"Adafactor",
"Adagrad",
"SGD",
"Lion",
"Paged AdamW",
"Galore AdamW",
],
),
P.basic("lr", 0.001),
],
)
ops.register_passive_op(
ENV,
"Repeat",
inputs=[ops.Input(name="input", position="top", type="tensor")],
outputs=[ops.Output(name="output", position="bottom", type="tensor")],
params=[
ops.Parameter.basic("times", 1, int),
ops.Parameter.basic("same_weights", False, bool),
],
)
ops.register_passive_op(
ENV,
"Recurrent chain",
inputs=[ops.Input(name="input", position="top", type="tensor")],
outputs=[ops.Output(name="output", position="bottom", type="tensor")],
params=[],
)
def _to_id(*strings: str) -> str:
"""Replaces all non-alphanumeric characters with underscores."""
return "_".join("".join(c if c.isalnum() else "_" for c in s) for s in strings)
@dataclasses.dataclass
class Layer:
"""Temporary data structure used by ModelBuilder."""
module: torch.nn.Module
origin_id: str
inputs: list[str]
outputs: list[str]
def for_sequential(self):
inputs = ", ".join(self.inputs)
outputs = ", ".join(self.outputs)
return self.module, f"{inputs} -> {outputs}"
class ColumnSpec(pydantic.BaseModel):
df: str
column: str
class ModelMapping(pydantic.BaseModel):
map: dict[str, ColumnSpec]
@dataclasses.dataclass
class ModelConfig:
model: torch.nn.Module
model_inputs: list[str]
model_outputs: list[str]
loss_inputs: list[str]
loss: torch.nn.Module
optimizer: torch.optim.Optimizer
source_workspace: str | None = None
trained: bool = False
def num_parameters(self) -> int:
return sum(p.numel() for p in self.model.parameters())
def _forward(self, inputs: dict[str, torch.Tensor]) -> dict[str, torch.Tensor]:
model_inputs = [inputs[i] for i in self.model_inputs]
output = self.model(*model_inputs)
if not isinstance(output, tuple):
output = (output,)
values = {k: v for k, v in zip(self.model_outputs, output)}
return values
def inference(self, inputs: dict[str, torch.Tensor]) -> dict[str, torch.Tensor]:
# TODO: Do multiple batches.
self.model.eval()
return self._forward(inputs)
def train(self, inputs: dict[str, torch.Tensor]) -> float:
"""Train the model for one epoch. Returns the loss."""
# TODO: Do multiple batches.
self.model.train()
self.optimizer.zero_grad()
values = self._forward(inputs)
values.update(inputs)
loss_inputs = [values[i] for i in self.loss_inputs]
loss = self.loss(*loss_inputs)
loss.backward()
self.optimizer.step()
return loss.item()
def copy(self):
"""Returns a copy of the model."""
c = dataclasses.replace(self)
c.model = copy.deepcopy(self.model)
return c
def metadata(self):
return {
"type": "model",
"model": {
"inputs": self.model_inputs,
"outputs": self.model_outputs,
"loss_inputs": self.loss_inputs,
"trained": self.trained,
},
}
def build_model(ws: workspace.Workspace) -> ModelConfig:
"""Builds the model described in the workspace."""
builder = ModelBuilder(ws)
return builder.build_model()
class ModelBuilder:
"""The state shared between methods that are used to build the model."""
def __init__(self, ws: workspace.Workspace):
self.catalog = ops.CATALOGS[ENV]
optimizers = []
self.nodes: dict[str, workspace.WorkspaceNode] = {}
repeats: list[str] = []
for node in ws.nodes:
self.nodes[node.id] = node
if node.data.title == "Optimizer":
optimizers.append(node.id)
elif node.data.title == "Repeat":
repeats.append(node.id)
self.nodes[f"START {node.id}"] = node
self.nodes[f"END {node.id}"] = node
assert optimizers, "No optimizer found."
assert len(optimizers) == 1, f"More than one optimizer found: {optimizers}"
[self.optimizer] = optimizers
self.dependencies = {n: [] for n in self.nodes}
self.in_edges: dict[str, dict[str, list[tuple[str, str]]]] = {n: {} for n in self.nodes}
self.out_edges: dict[str, dict[str, list[tuple[str, str]]]] = {n: {} for n in self.nodes}
for e in ws.edges:
self.dependencies[e.target].append(e.source)
self.in_edges.setdefault(e.target, {}).setdefault(e.targetHandle, []).append(
(e.source, e.sourceHandle)
)
self.out_edges.setdefault(e.source, {}).setdefault(e.sourceHandle, []).append(
(e.target, e.targetHandle)
)
# Split repeat boxes into start and end, and insert them into the flow.
# TODO: Think about recursive repeats.
for repeat in repeats:
if not self.out_edges[repeat] or not self.in_edges[repeat]:
continue
start_id = f"START {repeat}"
end_id = f"END {repeat}"
# repeat -> first <- real_input
# ...becomes...
# real_input -> start -> first
first, firsth = self.out_edges[repeat]["output"][0]
[(real_input, real_inputh)] = [
k for k in self.in_edges[first][firsth] if k != (repeat, "output")
]
self.dependencies[first].remove(repeat)
self.dependencies[first].append(start_id)
self.dependencies[start_id] = [real_input]
self.out_edges[real_input][real_inputh] = [
k if k != (first, firsth) else (start_id, "input")
for k in self.out_edges[real_input][real_inputh]
]
self.in_edges[start_id] = {"input": [(real_input, real_inputh)]}
self.out_edges[start_id] = {"output": [(first, firsth)]}
self.in_edges[first][firsth] = [(start_id, "output")]
# repeat <- last -> real_output
# ...becomes...
# last -> end -> real_output
last, lasth = self.in_edges[repeat]["input"][0]
[(real_output, real_outputh)] = [
k for k in self.out_edges[last][lasth] if k != (repeat, "input")
]
del self.dependencies[repeat]
self.dependencies[end_id] = [last]
self.dependencies[real_output].append(end_id)
self.out_edges[last][lasth] = [(end_id, "input")]
self.in_edges[end_id] = {"input": [(last, lasth)]}
self.out_edges[end_id] = {"output": [(real_output, real_outputh)]}
self.in_edges[real_output][real_outputh] = [
k if k != (last, lasth) else (end_id, "output")
for k in self.in_edges[real_output][real_outputh]
]
self.inv_dependencies = {n: [] for n in self.nodes}
for k, v in self.dependencies.items():
for i in v:
self.inv_dependencies[i].append(k)
self.layers: list[Layer] = []
# Clean up disconnected nodes.
disconnected = set()
for node_id in self.nodes:
op = self.catalog[self.nodes[node_id].data.title]
if len(self.in_edges[node_id]) != len(op.inputs):
disconnected.add(node_id)
disconnected |= self.all_upstream(node_id)
for node_id in disconnected:
del self.dependencies[node_id]
del self.in_edges[node_id]
del self.out_edges[node_id]
del self.inv_dependencies[node_id]
del self.nodes[node_id]
def all_upstream(self, node: str) -> set[str]:
"""Returns all nodes upstream of a node."""
deps = set()
for dep in self.dependencies[node]:
deps.add(dep)
deps.update(self.all_upstream(dep))
return deps
def all_downstream(self, node: str) -> set[str]:
"""Returns all nodes downstream of a node."""
deps = set()
for dep in self.inv_dependencies[node]:
deps.add(dep)
deps.update(self.all_downstream(dep))
return deps
def run_node(self, node_id: str) -> None:
"""Adds the layer(s) produced by this node to self.layers."""
node = self.nodes[node_id]
t = node.data.title
op = self.catalog[t]
p = op.convert_params(node.data.params)
match t:
case "Repeat":
if node_id.startswith("END "):
repeat_id = node_id.removeprefix("END ")
start_id = f"START {repeat_id}"
[last_output] = self.in_edges[node_id]["input"]
after_start = self.all_downstream(start_id)
after_end = self.all_downstream(node_id)
before_end = self.all_upstream(node_id)
affected_nodes = after_start - after_end - {node_id}
repeated_nodes = after_start & before_end
assert affected_nodes == repeated_nodes, (
f"edges leave repeated section '{repeat_id}':\n{affected_nodes - repeated_nodes}"
)
repeated_layers = [e for e in self.layers if e.origin_id in repeated_nodes]
assert p["times"] >= 1, f"Cannot repeat {repeat_id} {p['times']} times."
for i in range(p["times"] - 1):
# Copy repeat section's output to repeat section's input.
self.layers.append(
Layer(
torch.nn.Identity(),
origin_id=node_id,
inputs=[_to_id(*last_output)],
outputs=[_to_id(start_id, "output")],
)
)
# Repeat the layers in the section.
for layer in repeated_layers:
if p["same_weights"]:
self.layers.append(layer)
else:
self.run_node(layer.origin_id)
self.layers.append(self.run_op(node_id, op, p))
case "Optimizer" | "Input: tensor" | "Input: graph edges" | "Input: sequential":
return
case _:
self.layers.append(self.run_op(node_id, op, p))
def run_op(self, node_id: str, op: ops.Op, params) -> Layer:
"""Returns the layer produced by this op."""
inputs = [_to_id(*i) for n in op.inputs for i in self.in_edges[node_id][n]]
outputs = [_to_id(node_id, n) for n in op.outputs]
if op.func == ops.no_op:
module = torch.nn.Identity()
else:
module = op.func(*inputs, **params)
return Layer(module, node_id, inputs, outputs)
def build_model(self) -> ModelConfig:
# Walk the graph in topological order.
ts = graphlib.TopologicalSorter(self.dependencies)
for node_id in ts.static_order():
self.run_node(node_id)
return self.get_config()
def get_config(self) -> ModelConfig:
# Split the design into model and loss.
loss_nodes = set()
for node_id in self.nodes:
if "loss" in self.nodes[node_id].data.title:
loss_nodes.add(node_id)
loss_nodes |= self.all_downstream(node_id)
layers = []
loss_layers = []
for layer in self.layers:
if layer.origin_id in loss_nodes:
loss_layers.append(layer)
else:
layers.append(layer)
used_in_model = set(input for layer in layers for input in layer.inputs)
used_in_loss = set(input for layer in loss_layers for input in layer.inputs)
made_in_model = set(output for layer in layers for output in layer.outputs)
made_in_loss = set(output for layer in loss_layers for output in layer.outputs)
layers = [layer.for_sequential() for layer in layers]
loss_layers = [layer.for_sequential() for layer in loss_layers]
cfg = {}
cfg["model_inputs"] = list(used_in_model - made_in_model)
cfg["model_outputs"] = list(made_in_model & used_in_loss)
cfg["loss_inputs"] = list(used_in_loss - made_in_loss)
# Make sure the trained output is output from the last model layer.
outputs = ", ".join(cfg["model_outputs"])
layers.append((torch.nn.Identity(), f"{outputs} -> {outputs}"))
# Create model.
cfg["model"] = pyg_nn.Sequential(", ".join(cfg["model_inputs"]), layers)
# Make sure the loss is output from the last loss layer.
[(lossb, lossh)] = self.in_edges[self.optimizer]["loss"]
lossi = _to_id(lossb, lossh)
loss_layers.append((torch.nn.Identity(), f"{lossi} -> loss"))
# Create loss function.
cfg["loss"] = pyg_nn.Sequential(", ".join(cfg["loss_inputs"]), loss_layers)
assert not list(cfg["loss"].parameters()), f"loss should have no parameters: {loss_layers}"
# Create optimizer.
op = self.catalog["Optimizer"]
p = op.convert_params(self.nodes[self.optimizer].data.params)
o = getattr(torch.optim, p["type"].name)
cfg["optimizer"] = o(cfg["model"].parameters(), lr=p["lr"])
return ModelConfig(**cfg)
def to_tensors(b: core.Bundle, m: ModelMapping | None) -> dict[str, torch.Tensor]:
"""Converts a tensor to the correct type for PyTorch. Ignores missing mappings."""
if m is None:
return {}
tensors = {}
for k, v in m.map.items():
if v.df in b.dfs and v.column in b.dfs[v.df]:
tensors[k] = torch.tensor(b.dfs[v.df][v.column].to_list(), dtype=torch.float32)
return tensors