Spaces:
Running
Running
Do not track tensor shapes. Much simpler!
Browse files
examples/Model definition
CHANGED
|
@@ -1,12 +1,5 @@
|
|
| 1 |
{
|
| 2 |
"edges": [
|
| 3 |
-
{
|
| 4 |
-
"id": "Repeat 1 Linear 2",
|
| 5 |
-
"source": "Repeat 1",
|
| 6 |
-
"sourceHandle": "output",
|
| 7 |
-
"target": "Linear 2",
|
| 8 |
-
"targetHandle": "x"
|
| 9 |
-
},
|
| 10 |
{
|
| 11 |
"id": "Linear 2 Activation 1",
|
| 12 |
"source": "Linear 2",
|
|
@@ -14,17 +7,10 @@
|
|
| 14 |
"target": "Activation 1",
|
| 15 |
"targetHandle": "x"
|
| 16 |
},
|
| 17 |
-
{
|
| 18 |
-
"id": "Activation 1 Repeat 1",
|
| 19 |
-
"source": "Activation 1",
|
| 20 |
-
"sourceHandle": "output",
|
| 21 |
-
"target": "Repeat 1",
|
| 22 |
-
"targetHandle": "input"
|
| 23 |
-
},
|
| 24 |
{
|
| 25 |
"id": "Input: tensor 1 Linear 2",
|
| 26 |
"source": "Input: tensor 1",
|
| 27 |
-
"sourceHandle": "
|
| 28 |
"target": "Linear 2",
|
| 29 |
"targetHandle": "x"
|
| 30 |
},
|
|
@@ -45,9 +31,23 @@
|
|
| 45 |
{
|
| 46 |
"id": "Input: tensor 3 MSE loss 2",
|
| 47 |
"source": "Input: tensor 3",
|
| 48 |
-
"sourceHandle": "
|
| 49 |
"target": "MSE loss 2",
|
| 50 |
"targetHandle": "y"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 51 |
}
|
| 52 |
],
|
| 53 |
"env": "PyTorch model",
|
|
@@ -118,66 +118,6 @@
|
|
| 118 |
"data": {
|
| 119 |
"__execution_delay": 0.0,
|
| 120 |
"collapsed": null,
|
| 121 |
-
"display": null,
|
| 122 |
-
"error": null,
|
| 123 |
-
"input_metadata": null,
|
| 124 |
-
"meta": {
|
| 125 |
-
"inputs": {
|
| 126 |
-
"input": {
|
| 127 |
-
"name": "input",
|
| 128 |
-
"position": "top",
|
| 129 |
-
"type": {
|
| 130 |
-
"type": "tensor"
|
| 131 |
-
}
|
| 132 |
-
}
|
| 133 |
-
},
|
| 134 |
-
"name": "Repeat",
|
| 135 |
-
"outputs": {
|
| 136 |
-
"output": {
|
| 137 |
-
"name": "output",
|
| 138 |
-
"position": "bottom",
|
| 139 |
-
"type": {
|
| 140 |
-
"type": "tensor"
|
| 141 |
-
}
|
| 142 |
-
}
|
| 143 |
-
},
|
| 144 |
-
"params": {
|
| 145 |
-
"same_weights": {
|
| 146 |
-
"default": false,
|
| 147 |
-
"name": "same_weights",
|
| 148 |
-
"type": {
|
| 149 |
-
"type": "<class 'bool'>"
|
| 150 |
-
}
|
| 151 |
-
},
|
| 152 |
-
"times": {
|
| 153 |
-
"default": 1.0,
|
| 154 |
-
"name": "times",
|
| 155 |
-
"type": {
|
| 156 |
-
"type": "<class 'int'>"
|
| 157 |
-
}
|
| 158 |
-
}
|
| 159 |
-
},
|
| 160 |
-
"type": "basic"
|
| 161 |
-
},
|
| 162 |
-
"params": {
|
| 163 |
-
"same_weights": false,
|
| 164 |
-
"times": "3"
|
| 165 |
-
},
|
| 166 |
-
"status": "planned",
|
| 167 |
-
"title": "Repeat"
|
| 168 |
-
},
|
| 169 |
-
"dragHandle": ".bg-primary",
|
| 170 |
-
"height": 200.0,
|
| 171 |
-
"id": "Repeat 1",
|
| 172 |
-
"position": {
|
| 173 |
-
"x": -180.0,
|
| 174 |
-
"y": -90.0
|
| 175 |
-
},
|
| 176 |
-
"type": "basic",
|
| 177 |
-
"width": 200.0
|
| 178 |
-
},
|
| 179 |
-
{
|
| 180 |
-
"data": {
|
| 181 |
"display": null,
|
| 182 |
"error": null,
|
| 183 |
"input_metadata": null,
|
|
@@ -203,17 +143,17 @@
|
|
| 203 |
},
|
| 204 |
"params": {
|
| 205 |
"output_dim": {
|
| 206 |
-
"default": "
|
| 207 |
"name": "output_dim",
|
| 208 |
"type": {
|
| 209 |
-
"type": "<class '
|
| 210 |
}
|
| 211 |
}
|
| 212 |
},
|
| 213 |
"type": "basic"
|
| 214 |
},
|
| 215 |
"params": {
|
| 216 |
-
"output_dim": "
|
| 217 |
},
|
| 218 |
"status": "planned",
|
| 219 |
"title": "Linear"
|
|
|
|
| 1 |
{
|
| 2 |
"edges": [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
{
|
| 4 |
"id": "Linear 2 Activation 1",
|
| 5 |
"source": "Linear 2",
|
|
|
|
| 7 |
"target": "Activation 1",
|
| 8 |
"targetHandle": "x"
|
| 9 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
{
|
| 11 |
"id": "Input: tensor 1 Linear 2",
|
| 12 |
"source": "Input: tensor 1",
|
| 13 |
+
"sourceHandle": "x",
|
| 14 |
"target": "Linear 2",
|
| 15 |
"targetHandle": "x"
|
| 16 |
},
|
|
|
|
| 31 |
{
|
| 32 |
"id": "Input: tensor 3 MSE loss 2",
|
| 33 |
"source": "Input: tensor 3",
|
| 34 |
+
"sourceHandle": "x",
|
| 35 |
"target": "MSE loss 2",
|
| 36 |
"targetHandle": "y"
|
| 37 |
+
},
|
| 38 |
+
{
|
| 39 |
+
"id": "Activation 1 Repeat 1",
|
| 40 |
+
"source": "Activation 1",
|
| 41 |
+
"sourceHandle": "output",
|
| 42 |
+
"target": "Repeat 1",
|
| 43 |
+
"targetHandle": "input"
|
| 44 |
+
},
|
| 45 |
+
{
|
| 46 |
+
"id": "Repeat 1 Linear 2",
|
| 47 |
+
"source": "Repeat 1",
|
| 48 |
+
"sourceHandle": "output",
|
| 49 |
+
"target": "Linear 2",
|
| 50 |
+
"targetHandle": "x"
|
| 51 |
}
|
| 52 |
],
|
| 53 |
"env": "PyTorch model",
|
|
|
|
| 118 |
"data": {
|
| 119 |
"__execution_delay": 0.0,
|
| 120 |
"collapsed": null,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 121 |
"display": null,
|
| 122 |
"error": null,
|
| 123 |
"input_metadata": null,
|
|
|
|
| 143 |
},
|
| 144 |
"params": {
|
| 145 |
"output_dim": {
|
| 146 |
+
"default": "",
|
| 147 |
"name": "output_dim",
|
| 148 |
"type": {
|
| 149 |
+
"type": "<class 'int'>"
|
| 150 |
}
|
| 151 |
}
|
| 152 |
},
|
| 153 |
"type": "basic"
|
| 154 |
},
|
| 155 |
"params": {
|
| 156 |
+
"output_dim": "4"
|
| 157 |
},
|
| 158 |
"status": "planned",
|
| 159 |
"title": "Linear"
|
lynxkite-graph-analytics/src/lynxkite_graph_analytics/lynxkite_ops.py
CHANGED
|
@@ -347,7 +347,7 @@ def define_model(
|
|
| 347 |
assert model_workspace, "Model workspace is unset."
|
| 348 |
ws = load_ws(model_workspace)
|
| 349 |
# Build the model without inputs, to get its interface.
|
| 350 |
-
m = pytorch_model_ops.build_model(ws
|
| 351 |
m.source_workspace = model_workspace
|
| 352 |
bundle = bundle.copy()
|
| 353 |
bundle.other[save_as] = m
|
|
@@ -379,10 +379,6 @@ def train_model(
|
|
| 379 |
"""Trains the selected model on the selected dataset. Most training parameters are set in the model definition."""
|
| 380 |
m = bundle.other[model_name].copy()
|
| 381 |
inputs = pytorch_model_ops.to_tensors(bundle, input_mapping)
|
| 382 |
-
if not m.trained and m.source_workspace:
|
| 383 |
-
# Rebuild the model for the correct inputs.
|
| 384 |
-
ws = load_ws(m.source_workspace)
|
| 385 |
-
m = pytorch_model_ops.build_model(ws, inputs)
|
| 386 |
t = tqdm(range(epochs), desc="Training model")
|
| 387 |
for _ in t:
|
| 388 |
loss = m.train(inputs)
|
|
|
|
| 347 |
assert model_workspace, "Model workspace is unset."
|
| 348 |
ws = load_ws(model_workspace)
|
| 349 |
# Build the model without inputs, to get its interface.
|
| 350 |
+
m = pytorch_model_ops.build_model(ws)
|
| 351 |
m.source_workspace = model_workspace
|
| 352 |
bundle = bundle.copy()
|
| 353 |
bundle.other[save_as] = m
|
|
|
|
| 379 |
"""Trains the selected model on the selected dataset. Most training parameters are set in the model definition."""
|
| 380 |
m = bundle.other[model_name].copy()
|
| 381 |
inputs = pytorch_model_ops.to_tensors(bundle, input_mapping)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 382 |
t = tqdm(range(epochs), desc="Training model")
|
| 383 |
for _ in t:
|
| 384 |
loss = m.train(inputs)
|
lynxkite-graph-analytics/src/lynxkite_graph_analytics/pytorch_model_ops.py
CHANGED
|
@@ -8,7 +8,7 @@ import pydantic
|
|
| 8 |
from lynxkite.core import ops, workspace
|
| 9 |
from lynxkite.core.ops import Parameter as P
|
| 10 |
import torch
|
| 11 |
-
import torch_geometric as
|
| 12 |
import dataclasses
|
| 13 |
from . import core
|
| 14 |
|
|
@@ -78,12 +78,8 @@ reg("Dropout", inputs=["x"], params=[P.basic("p", 0.5)])
|
|
| 78 |
|
| 79 |
|
| 80 |
@op("Linear")
|
| 81 |
-
def linear(x, *, output_dim=
|
| 82 |
-
|
| 83 |
-
oshape = x.shape
|
| 84 |
-
else:
|
| 85 |
-
oshape = tuple(*x.shape[:-1], int(output_dim))
|
| 86 |
-
return Layer(torch.nn.Linear(x.shape, oshape), shape=oshape)
|
| 87 |
|
| 88 |
|
| 89 |
class ActivationTypes(enum.Enum):
|
|
@@ -95,13 +91,12 @@ class ActivationTypes(enum.Enum):
|
|
| 95 |
|
| 96 |
@op("Activation")
|
| 97 |
def activation(x, *, type: ActivationTypes = ActivationTypes.ReLU):
|
| 98 |
-
|
| 99 |
-
return Layer(f, shape=x.shape)
|
| 100 |
|
| 101 |
|
| 102 |
@op("MSE loss")
|
| 103 |
def mse_loss(x, y):
|
| 104 |
-
return
|
| 105 |
|
| 106 |
|
| 107 |
reg("Softmax", inputs=["x"])
|
|
@@ -163,34 +158,18 @@ def _to_id(*strings: str) -> str:
|
|
| 163 |
return "_".join("".join(c if c.isalnum() else "_" for c in s) for s in strings)
|
| 164 |
|
| 165 |
|
| 166 |
-
@dataclasses.dataclass
|
| 167 |
-
class TensorRef:
|
| 168 |
-
"""Ops get their inputs like this. They have to return a Layer made for this input."""
|
| 169 |
-
|
| 170 |
-
_id: str
|
| 171 |
-
shape: tuple[int, ...]
|
| 172 |
-
|
| 173 |
-
|
| 174 |
@dataclasses.dataclass
|
| 175 |
class Layer:
|
| 176 |
-
"""
|
| 177 |
|
| 178 |
module: torch.nn.Module
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
def __post_init__(self, shape):
|
| 187 |
-
assert not self.shapes or not shape, "Cannot set both shapes and shape."
|
| 188 |
-
if shape:
|
| 189 |
-
self.shapes = [shape]
|
| 190 |
-
|
| 191 |
-
def _for_sequential(self):
|
| 192 |
-
inputs = ", ".join(i._id for i in self._inputs)
|
| 193 |
-
outputs = ", ".join(o._id for o in self._outputs)
|
| 194 |
return self.module, f"{inputs} -> {outputs}"
|
| 195 |
|
| 196 |
|
|
@@ -261,16 +240,16 @@ class ModelConfig:
|
|
| 261 |
}
|
| 262 |
|
| 263 |
|
| 264 |
-
def build_model(ws: workspace.Workspace
|
| 265 |
"""Builds the model described in the workspace."""
|
| 266 |
-
builder = ModelBuilder(ws
|
| 267 |
return builder.build_model()
|
| 268 |
|
| 269 |
|
| 270 |
class ModelBuilder:
|
| 271 |
"""The state shared between methods that are used to build the model."""
|
| 272 |
|
| 273 |
-
def __init__(self, ws: workspace.Workspace
|
| 274 |
self.catalog = ops.CATALOGS[ENV]
|
| 275 |
optimizers = []
|
| 276 |
self.nodes: dict[str, workspace.WorkspaceNode] = {}
|
|
@@ -287,8 +266,8 @@ class ModelBuilder:
|
|
| 287 |
assert len(optimizers) == 1, f"More than one optimizer found: {optimizers}"
|
| 288 |
[self.optimizer] = optimizers
|
| 289 |
self.dependencies = {n: [] for n in self.nodes}
|
| 290 |
-
self.in_edges: dict[str, dict[str, list[
|
| 291 |
-
self.out_edges: dict[str, dict[str, list[
|
| 292 |
for e in ws.edges:
|
| 293 |
self.dependencies[e.target].append(e.source)
|
| 294 |
self.in_edges.setdefault(e.target, {}).setdefault(e.targetHandle, []).append(
|
|
@@ -342,10 +321,7 @@ class ModelBuilder:
|
|
| 342 |
for k, v in self.dependencies.items():
|
| 343 |
for i in v:
|
| 344 |
self.inv_dependencies[i].append(k)
|
| 345 |
-
self.
|
| 346 |
-
for k, i in inputs.items():
|
| 347 |
-
self.sizes[k] = i.shape[-1]
|
| 348 |
-
self.layers = []
|
| 349 |
# Clean up disconnected nodes.
|
| 350 |
disconnected = set()
|
| 351 |
for node_id in self.nodes:
|
|
@@ -396,13 +372,14 @@ class ModelBuilder:
|
|
| 396 |
assert affected_nodes == repeated_nodes, (
|
| 397 |
f"edges leave repeated section '{repeat_id}':\n{affected_nodes - repeated_nodes}"
|
| 398 |
)
|
| 399 |
-
repeated_layers = [e for e in self.layers if e.
|
| 400 |
assert p["times"] >= 1, f"Cannot repeat {repeat_id} {p['times']} times."
|
| 401 |
for i in range(p["times"] - 1):
|
| 402 |
# Copy repeat section's output to repeat section's input.
|
| 403 |
self.layers.append(
|
| 404 |
-
|
| 405 |
-
|
|
|
|
| 406 |
inputs=[_to_id(*last_output)],
|
| 407 |
outputs=[_to_id(start_id, "output")],
|
| 408 |
)
|
|
@@ -410,17 +387,9 @@ class ModelBuilder:
|
|
| 410 |
# Repeat the layers in the section.
|
| 411 |
for layer in repeated_layers:
|
| 412 |
if p["same_weights"]:
|
| 413 |
-
self.layers.append(
|
| 414 |
-
Layer(
|
| 415 |
-
layer.module,
|
| 416 |
-
shapes=layer.shapes,
|
| 417 |
-
_origin_id=layer._origin_id,
|
| 418 |
-
_inputs=layer._inputs,
|
| 419 |
-
_outputs=layer._outputs,
|
| 420 |
-
)
|
| 421 |
-
)
|
| 422 |
else:
|
| 423 |
-
self.run_node(layer.
|
| 424 |
self.layers.append(self.run_op(node_id, op, p))
|
| 425 |
case "Optimizer" | "Input: tensor" | "Input: graph edges" | "Input: sequential":
|
| 426 |
return
|
|
@@ -431,31 +400,11 @@ class ModelBuilder:
|
|
| 431 |
"""Returns the layer produced by this op."""
|
| 432 |
inputs = [_to_id(*i) for n in op.inputs for i in self.in_edges[node_id][n]]
|
| 433 |
outputs = [_to_id(node_id, n) for n in op.outputs]
|
| 434 |
-
|
| 435 |
-
|
| 436 |
-
|
| 437 |
-
|
| 438 |
-
|
| 439 |
-
for o in layer._outputs:
|
| 440 |
-
self.sizes[o._id] = o.shape
|
| 441 |
-
return layer
|
| 442 |
-
|
| 443 |
-
def empty_layer(self, id: str, inputs: list[str], outputs: list[str]) -> Layer:
|
| 444 |
-
"""Creates an identity layer. Assumes that outputs have the same shapes as inputs."""
|
| 445 |
-
layer_inputs = [TensorRef(i, shape=self.sizes.get(i, 1)) for i in inputs]
|
| 446 |
-
layer_outputs = []
|
| 447 |
-
for i, o in zip(inputs, outputs):
|
| 448 |
-
shape = self.sizes.get(i, 1)
|
| 449 |
-
layer_outputs.append(TensorRef(o, shape=shape))
|
| 450 |
-
self.sizes[o] = shape
|
| 451 |
-
layer = Layer(
|
| 452 |
-
torch.nn.Identity(),
|
| 453 |
-
shapes=[self.sizes[o._id] for o in layer_outputs],
|
| 454 |
-
_inputs=layer_inputs,
|
| 455 |
-
_outputs=layer_outputs,
|
| 456 |
-
_origin_id=id,
|
| 457 |
-
)
|
| 458 |
-
return layer
|
| 459 |
|
| 460 |
def build_model(self) -> ModelConfig:
|
| 461 |
# Walk the graph in topological order.
|
|
@@ -474,16 +423,16 @@ class ModelBuilder:
|
|
| 474 |
layers = []
|
| 475 |
loss_layers = []
|
| 476 |
for layer in self.layers:
|
| 477 |
-
if layer.
|
| 478 |
loss_layers.append(layer)
|
| 479 |
else:
|
| 480 |
layers.append(layer)
|
| 481 |
-
used_in_model = set(input
|
| 482 |
-
used_in_loss = set(input
|
| 483 |
-
made_in_model = set(output
|
| 484 |
-
made_in_loss = set(output
|
| 485 |
-
layers = [layer.
|
| 486 |
-
loss_layers = [layer.
|
| 487 |
cfg = {}
|
| 488 |
cfg["model_inputs"] = list(used_in_model - made_in_model)
|
| 489 |
cfg["model_outputs"] = list(made_in_model & used_in_loss)
|
|
@@ -492,13 +441,13 @@ class ModelBuilder:
|
|
| 492 |
outputs = ", ".join(cfg["model_outputs"])
|
| 493 |
layers.append((torch.nn.Identity(), f"{outputs} -> {outputs}"))
|
| 494 |
# Create model.
|
| 495 |
-
cfg["model"] =
|
| 496 |
# Make sure the loss is output from the last loss layer.
|
| 497 |
[(lossb, lossh)] = self.in_edges[self.optimizer]["loss"]
|
| 498 |
lossi = _to_id(lossb, lossh)
|
| 499 |
loss_layers.append((torch.nn.Identity(), f"{lossi} -> loss"))
|
| 500 |
# Create loss function.
|
| 501 |
-
cfg["loss"] =
|
| 502 |
assert not list(cfg["loss"].parameters()), f"loss should have no parameters: {loss_layers}"
|
| 503 |
# Create optimizer.
|
| 504 |
op = self.catalog["Optimizer"]
|
|
|
|
| 8 |
from lynxkite.core import ops, workspace
|
| 9 |
from lynxkite.core.ops import Parameter as P
|
| 10 |
import torch
|
| 11 |
+
import torch_geometric.nn as pyg_nn
|
| 12 |
import dataclasses
|
| 13 |
from . import core
|
| 14 |
|
|
|
|
| 78 |
|
| 79 |
|
| 80 |
@op("Linear")
|
| 81 |
+
def linear(x, *, output_dim=1024):
|
| 82 |
+
return pyg_nn.Linear(-1, output_dim)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 83 |
|
| 84 |
|
| 85 |
class ActivationTypes(enum.Enum):
|
|
|
|
| 91 |
|
| 92 |
@op("Activation")
|
| 93 |
def activation(x, *, type: ActivationTypes = ActivationTypes.ReLU):
|
| 94 |
+
return getattr(torch.nn.functional, type.name.lower().replace(" ", "_"))
|
|
|
|
| 95 |
|
| 96 |
|
| 97 |
@op("MSE loss")
|
| 98 |
def mse_loss(x, y):
|
| 99 |
+
return torch.nn.functional.mse_loss
|
| 100 |
|
| 101 |
|
| 102 |
reg("Softmax", inputs=["x"])
|
|
|
|
| 158 |
return "_".join("".join(c if c.isalnum() else "_" for c in s) for s in strings)
|
| 159 |
|
| 160 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 161 |
@dataclasses.dataclass
|
| 162 |
class Layer:
|
| 163 |
+
"""Temporary data structure used by ModelBuilder."""
|
| 164 |
|
| 165 |
module: torch.nn.Module
|
| 166 |
+
origin_id: str
|
| 167 |
+
inputs: list[str]
|
| 168 |
+
outputs: list[str]
|
| 169 |
+
|
| 170 |
+
def for_sequential(self):
|
| 171 |
+
inputs = ", ".join(self.inputs)
|
| 172 |
+
outputs = ", ".join(self.outputs)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 173 |
return self.module, f"{inputs} -> {outputs}"
|
| 174 |
|
| 175 |
|
|
|
|
| 240 |
}
|
| 241 |
|
| 242 |
|
| 243 |
+
def build_model(ws: workspace.Workspace) -> ModelConfig:
|
| 244 |
"""Builds the model described in the workspace."""
|
| 245 |
+
builder = ModelBuilder(ws)
|
| 246 |
return builder.build_model()
|
| 247 |
|
| 248 |
|
| 249 |
class ModelBuilder:
|
| 250 |
"""The state shared between methods that are used to build the model."""
|
| 251 |
|
| 252 |
+
def __init__(self, ws: workspace.Workspace):
|
| 253 |
self.catalog = ops.CATALOGS[ENV]
|
| 254 |
optimizers = []
|
| 255 |
self.nodes: dict[str, workspace.WorkspaceNode] = {}
|
|
|
|
| 266 |
assert len(optimizers) == 1, f"More than one optimizer found: {optimizers}"
|
| 267 |
[self.optimizer] = optimizers
|
| 268 |
self.dependencies = {n: [] for n in self.nodes}
|
| 269 |
+
self.in_edges: dict[str, dict[str, list[tuple[str, str]]]] = {n: {} for n in self.nodes}
|
| 270 |
+
self.out_edges: dict[str, dict[str, list[tuple[str, str]]]] = {n: {} for n in self.nodes}
|
| 271 |
for e in ws.edges:
|
| 272 |
self.dependencies[e.target].append(e.source)
|
| 273 |
self.in_edges.setdefault(e.target, {}).setdefault(e.targetHandle, []).append(
|
|
|
|
| 321 |
for k, v in self.dependencies.items():
|
| 322 |
for i in v:
|
| 323 |
self.inv_dependencies[i].append(k)
|
| 324 |
+
self.layers: list[Layer] = []
|
|
|
|
|
|
|
|
|
|
| 325 |
# Clean up disconnected nodes.
|
| 326 |
disconnected = set()
|
| 327 |
for node_id in self.nodes:
|
|
|
|
| 372 |
assert affected_nodes == repeated_nodes, (
|
| 373 |
f"edges leave repeated section '{repeat_id}':\n{affected_nodes - repeated_nodes}"
|
| 374 |
)
|
| 375 |
+
repeated_layers = [e for e in self.layers if e.origin_id in repeated_nodes]
|
| 376 |
assert p["times"] >= 1, f"Cannot repeat {repeat_id} {p['times']} times."
|
| 377 |
for i in range(p["times"] - 1):
|
| 378 |
# Copy repeat section's output to repeat section's input.
|
| 379 |
self.layers.append(
|
| 380 |
+
Layer(
|
| 381 |
+
torch.nn.Identity(),
|
| 382 |
+
origin_id=node_id,
|
| 383 |
inputs=[_to_id(*last_output)],
|
| 384 |
outputs=[_to_id(start_id, "output")],
|
| 385 |
)
|
|
|
|
| 387 |
# Repeat the layers in the section.
|
| 388 |
for layer in repeated_layers:
|
| 389 |
if p["same_weights"]:
|
| 390 |
+
self.layers.append(layer)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 391 |
else:
|
| 392 |
+
self.run_node(layer.origin_id)
|
| 393 |
self.layers.append(self.run_op(node_id, op, p))
|
| 394 |
case "Optimizer" | "Input: tensor" | "Input: graph edges" | "Input: sequential":
|
| 395 |
return
|
|
|
|
| 400 |
"""Returns the layer produced by this op."""
|
| 401 |
inputs = [_to_id(*i) for n in op.inputs for i in self.in_edges[node_id][n]]
|
| 402 |
outputs = [_to_id(node_id, n) for n in op.outputs]
|
| 403 |
+
if op.func == ops.no_op:
|
| 404 |
+
module = torch.nn.Identity()
|
| 405 |
+
else:
|
| 406 |
+
module = op.func(*inputs, **params)
|
| 407 |
+
return Layer(module, node_id, inputs, outputs)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 408 |
|
| 409 |
def build_model(self) -> ModelConfig:
|
| 410 |
# Walk the graph in topological order.
|
|
|
|
| 423 |
layers = []
|
| 424 |
loss_layers = []
|
| 425 |
for layer in self.layers:
|
| 426 |
+
if layer.origin_id in loss_nodes:
|
| 427 |
loss_layers.append(layer)
|
| 428 |
else:
|
| 429 |
layers.append(layer)
|
| 430 |
+
used_in_model = set(input for layer in layers for input in layer.inputs)
|
| 431 |
+
used_in_loss = set(input for layer in loss_layers for input in layer.inputs)
|
| 432 |
+
made_in_model = set(output for layer in layers for output in layer.outputs)
|
| 433 |
+
made_in_loss = set(output for layer in loss_layers for output in layer.outputs)
|
| 434 |
+
layers = [layer.for_sequential() for layer in layers]
|
| 435 |
+
loss_layers = [layer.for_sequential() for layer in loss_layers]
|
| 436 |
cfg = {}
|
| 437 |
cfg["model_inputs"] = list(used_in_model - made_in_model)
|
| 438 |
cfg["model_outputs"] = list(made_in_model & used_in_loss)
|
|
|
|
| 441 |
outputs = ", ".join(cfg["model_outputs"])
|
| 442 |
layers.append((torch.nn.Identity(), f"{outputs} -> {outputs}"))
|
| 443 |
# Create model.
|
| 444 |
+
cfg["model"] = pyg_nn.Sequential(", ".join(cfg["model_inputs"]), layers)
|
| 445 |
# Make sure the loss is output from the last loss layer.
|
| 446 |
[(lossb, lossh)] = self.in_edges[self.optimizer]["loss"]
|
| 447 |
lossi = _to_id(lossb, lossh)
|
| 448 |
loss_layers.append((torch.nn.Identity(), f"{lossi} -> loss"))
|
| 449 |
# Create loss function.
|
| 450 |
+
cfg["loss"] = pyg_nn.Sequential(", ".join(cfg["loss_inputs"]), loss_layers)
|
| 451 |
assert not list(cfg["loss"].parameters()), f"loss should have no parameters: {loss_layers}"
|
| 452 |
# Create optimizer.
|
| 453 |
op = self.catalog["Optimizer"]
|
lynxkite-graph-analytics/tests/test_pytorch_model_ops.py
CHANGED
|
@@ -4,7 +4,7 @@ import torch
|
|
| 4 |
import pytest
|
| 5 |
|
| 6 |
|
| 7 |
-
def make_ws(env, nodes: dict[str, dict], edges: list[tuple[str, str
|
| 8 |
ws = workspace.Workspace(env=env)
|
| 9 |
for id, data in nodes.items():
|
| 10 |
title = data["title"]
|
|
@@ -49,7 +49,7 @@ async def test_build_model():
|
|
| 49 |
pytorch_model_ops.ENV,
|
| 50 |
{
|
| 51 |
"emb": {"title": "Input: tensor"},
|
| 52 |
-
"lin": {"title": "Linear", "output_dim":
|
| 53 |
"act": {"title": "Activation", "type": "Leaky_ReLU"},
|
| 54 |
"label": {"title": "Input: tensor"},
|
| 55 |
"loss": {"title": "MSE loss"},
|
|
@@ -65,7 +65,7 @@ async def test_build_model():
|
|
| 65 |
)
|
| 66 |
x = torch.rand(100, 4)
|
| 67 |
y = x + 1
|
| 68 |
-
m = pytorch_model_ops.build_model(ws
|
| 69 |
for i in range(1000):
|
| 70 |
loss = m.train({"emb_output": x, "label_output": y})
|
| 71 |
assert loss < 0.1
|
|
@@ -80,7 +80,7 @@ async def test_build_model_with_repeat():
|
|
| 80 |
pytorch_model_ops.ENV,
|
| 81 |
{
|
| 82 |
"emb": {"title": "Input: tensor"},
|
| 83 |
-
"lin": {"title": "Linear", "output_dim":
|
| 84 |
"act": {"title": "Activation", "type": "Leaky_ReLU"},
|
| 85 |
"label": {"title": "Input: tensor"},
|
| 86 |
"loss": {"title": "MSE loss"},
|
|
@@ -99,17 +99,17 @@ async def test_build_model_with_repeat():
|
|
| 99 |
)
|
| 100 |
|
| 101 |
# 1 repetition
|
| 102 |
-
m = pytorch_model_ops.build_model(repeated_ws(1)
|
| 103 |
assert summarize_layers(m) == "IL<II"
|
| 104 |
assert summarize_connections(m) == "e->S S->l l->a a->E E->E"
|
| 105 |
|
| 106 |
# 2 repetitions
|
| 107 |
-
m = pytorch_model_ops.build_model(repeated_ws(2)
|
| 108 |
assert summarize_layers(m) == "IL<IL<II"
|
| 109 |
assert summarize_connections(m) == "e->S S->l l->a a->S S->l l->a a->E E->E"
|
| 110 |
|
| 111 |
# 3 repetitions
|
| 112 |
-
m = pytorch_model_ops.build_model(repeated_ws(3)
|
| 113 |
assert summarize_layers(m) == "IL<IL<IL<II"
|
| 114 |
assert summarize_connections(m) == "e->S S->l l->a a->S S->l l->a a->S S->l l->a a->E E->E"
|
| 115 |
|
|
|
|
| 4 |
import pytest
|
| 5 |
|
| 6 |
|
| 7 |
+
def make_ws(env, nodes: dict[str, dict], edges: list[tuple[str, str]]):
|
| 8 |
ws = workspace.Workspace(env=env)
|
| 9 |
for id, data in nodes.items():
|
| 10 |
title = data["title"]
|
|
|
|
| 49 |
pytorch_model_ops.ENV,
|
| 50 |
{
|
| 51 |
"emb": {"title": "Input: tensor"},
|
| 52 |
+
"lin": {"title": "Linear", "output_dim": 4},
|
| 53 |
"act": {"title": "Activation", "type": "Leaky_ReLU"},
|
| 54 |
"label": {"title": "Input: tensor"},
|
| 55 |
"loss": {"title": "MSE loss"},
|
|
|
|
| 65 |
)
|
| 66 |
x = torch.rand(100, 4)
|
| 67 |
y = x + 1
|
| 68 |
+
m = pytorch_model_ops.build_model(ws)
|
| 69 |
for i in range(1000):
|
| 70 |
loss = m.train({"emb_output": x, "label_output": y})
|
| 71 |
assert loss < 0.1
|
|
|
|
| 80 |
pytorch_model_ops.ENV,
|
| 81 |
{
|
| 82 |
"emb": {"title": "Input: tensor"},
|
| 83 |
+
"lin": {"title": "Linear", "output_dim": 8},
|
| 84 |
"act": {"title": "Activation", "type": "Leaky_ReLU"},
|
| 85 |
"label": {"title": "Input: tensor"},
|
| 86 |
"loss": {"title": "MSE loss"},
|
|
|
|
| 99 |
)
|
| 100 |
|
| 101 |
# 1 repetition
|
| 102 |
+
m = pytorch_model_ops.build_model(repeated_ws(1))
|
| 103 |
assert summarize_layers(m) == "IL<II"
|
| 104 |
assert summarize_connections(m) == "e->S S->l l->a a->E E->E"
|
| 105 |
|
| 106 |
# 2 repetitions
|
| 107 |
+
m = pytorch_model_ops.build_model(repeated_ws(2))
|
| 108 |
assert summarize_layers(m) == "IL<IL<II"
|
| 109 |
assert summarize_connections(m) == "e->S S->l l->a a->S S->l l->a a->E E->E"
|
| 110 |
|
| 111 |
# 3 repetitions
|
| 112 |
+
m = pytorch_model_ops.build_model(repeated_ws(3))
|
| 113 |
assert summarize_layers(m) == "IL<IL<IL<II"
|
| 114 |
assert summarize_connections(m) == "e->S S->l l->a a->S S->l l->a a->S S->l l->a a->E E->E"
|
| 115 |
|