Spaces:
Running
Running
High level boxes for Neural ODE + GNN demo.
Browse files
lynxkite-graph-analytics/src/lynxkite_graph_analytics/pytorch_model_ops.py
CHANGED
@@ -29,7 +29,11 @@ reg("Input: graph edges", outputs=["edges"])
|
|
29 |
reg("Input: label", outputs=["y"])
|
30 |
reg("Input: positive sample", outputs=["x_pos"])
|
31 |
reg("Input: negative sample", outputs=["x_neg"])
|
|
|
|
|
32 |
|
|
|
|
|
33 |
reg("Attention", inputs=["q", "k", "v"], outputs=["x", "weights"])
|
34 |
reg("LayerNorm", inputs=["x"])
|
35 |
reg("Dropout", inputs=["x"], params=[P.basic("p", 0.5)])
|
@@ -82,6 +86,14 @@ ops.register_passive_op(
|
|
82 |
params=[ops.Parameter.basic("times", 1, int)],
|
83 |
)
|
84 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
85 |
|
86 |
def build_model(ws: workspace.Workspace, inputs: dict):
|
87 |
"""Builds the model described in the workspace."""
|
|
|
29 |
reg("Input: label", outputs=["y"])
|
30 |
reg("Input: positive sample", outputs=["x_pos"])
|
31 |
reg("Input: negative sample", outputs=["x_neg"])
|
32 |
+
reg("Input: sequential", outputs=["y"])
|
33 |
+
reg("Input: zeros", outputs=["x"])
|
34 |
|
35 |
+
reg("LSTM", inputs=["x", "h"], outputs=["x", "h"])
|
36 |
+
reg("Neural ODE", inputs=["x"])
|
37 |
reg("Attention", inputs=["q", "k", "v"], outputs=["x", "weights"])
|
38 |
reg("LayerNorm", inputs=["x"])
|
39 |
reg("Dropout", inputs=["x"], params=[P.basic("p", 0.5)])
|
|
|
86 |
params=[ops.Parameter.basic("times", 1, int)],
|
87 |
)
|
88 |
|
89 |
+
ops.register_passive_op(
|
90 |
+
ENV,
|
91 |
+
"Recurrent chain",
|
92 |
+
inputs=[ops.Input(name="input", position="top", type="tensor")],
|
93 |
+
outputs=[ops.Output(name="output", position="bottom", type="tensor")],
|
94 |
+
params=[],
|
95 |
+
)
|
96 |
+
|
97 |
|
98 |
def build_model(ws: workspace.Workspace, inputs: dict):
|
99 |
"""Builds the model described in the workspace."""
|