darabos commited on
Commit
11146c1
·
unverified ·
2 Parent(s): 5dc89e7 8bad190

Merge pull request #153 from biggraph/darabos-image-table

Browse files
examples/Image table.lynxkite.json ADDED
@@ -0,0 +1,364 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "edges": [
3
+ {
4
+ "id": "Example image table 1 View tables 1",
5
+ "source": "Example image table 1",
6
+ "sourceHandle": "output",
7
+ "target": "View tables 1",
8
+ "targetHandle": "bundle"
9
+ },
10
+ {
11
+ "id": "Import CSV 1 Draw molecules 1",
12
+ "source": "Import CSV 1",
13
+ "sourceHandle": "output",
14
+ "target": "Draw molecules 1",
15
+ "targetHandle": "df"
16
+ },
17
+ {
18
+ "id": "Draw molecules 1 View tables 2",
19
+ "source": "Draw molecules 1",
20
+ "sourceHandle": "output",
21
+ "target": "View tables 2",
22
+ "targetHandle": "bundle"
23
+ }
24
+ ],
25
+ "env": "LynxKite Graph Analytics",
26
+ "nodes": [
27
+ {
28
+ "data": {
29
+ "__execution_delay": null,
30
+ "collapsed": true,
31
+ "display": null,
32
+ "error": null,
33
+ "input_metadata": [],
34
+ "meta": {
35
+ "color": "orange",
36
+ "inputs": [],
37
+ "name": "Example image table",
38
+ "outputs": [
39
+ {
40
+ "name": "output",
41
+ "position": "right",
42
+ "type": {
43
+ "type": "None"
44
+ }
45
+ }
46
+ ],
47
+ "params": [],
48
+ "type": "basic"
49
+ },
50
+ "params": {},
51
+ "status": "done",
52
+ "title": "Example image table"
53
+ },
54
+ "dragHandle": ".bg-primary",
55
+ "height": 200.0,
56
+ "id": "Example image table 1",
57
+ "position": {
58
+ "x": 213.60043945845376,
59
+ "y": 306.98088700969373
60
+ },
61
+ "type": "basic",
62
+ "width": 280.0
63
+ },
64
+ {
65
+ "data": {
66
+ "display": {
67
+ "dataframes": {
68
+ "df": {
69
+ "columns": [
70
+ "names",
71
+ "images"
72
+ ],
73
+ "data": [
74
+ [
75
+ "svg",
76
+ "<svg xmlns=\"http://www.w3.org/2000/svg\" viewBox=\"0 0 64 64\" enable-background=\"new 0 0 64 64\"><path d=\"M56 2 18.8 42.909 8 34.729 2 34.729 18.8 62 62 2z\"/></svg>"
77
+ ],
78
+ [
79
+ "data",
80
+ ""
81
+ ],
82
+ [
83
+ "http",
84
+ "https://upload.wikimedia.org/wikipedia/commons/2/2e/Emojione_BW_2714.svg"
85
+ ]
86
+ ]
87
+ }
88
+ },
89
+ "other": {},
90
+ "relations": []
91
+ },
92
+ "error": null,
93
+ "input_metadata": [
94
+ {
95
+ "dataframes": {
96
+ "df": {
97
+ "columns": [
98
+ "images",
99
+ "names"
100
+ ]
101
+ }
102
+ },
103
+ "other": {},
104
+ "relations": []
105
+ }
106
+ ],
107
+ "meta": {
108
+ "color": "orange",
109
+ "inputs": [
110
+ {
111
+ "name": "bundle",
112
+ "position": "left",
113
+ "type": {
114
+ "type": "<class 'lynxkite_graph_analytics.core.Bundle'>"
115
+ }
116
+ }
117
+ ],
118
+ "name": "View tables",
119
+ "outputs": [],
120
+ "params": [
121
+ {
122
+ "default": 100,
123
+ "name": "limit",
124
+ "type": {
125
+ "type": "<class 'int'>"
126
+ }
127
+ }
128
+ ],
129
+ "type": "table_view"
130
+ },
131
+ "params": {
132
+ "limit": 100.0
133
+ },
134
+ "status": "done",
135
+ "title": "View tables"
136
+ },
137
+ "dragHandle": ".bg-primary",
138
+ "height": 440.0,
139
+ "id": "View tables 1",
140
+ "position": {
141
+ "x": 626.2831607914023,
142
+ "y": 109.55448939208392
143
+ },
144
+ "type": "table_view",
145
+ "width": 376.0
146
+ },
147
+ {
148
+ "data": {
149
+ "__execution_delay": 0.0,
150
+ "collapsed": null,
151
+ "display": null,
152
+ "error": null,
153
+ "input_metadata": [],
154
+ "meta": {
155
+ "color": "orange",
156
+ "inputs": [],
157
+ "name": "Import CSV",
158
+ "outputs": [
159
+ {
160
+ "name": "output",
161
+ "position": "right",
162
+ "type": {
163
+ "type": "None"
164
+ }
165
+ }
166
+ ],
167
+ "params": [
168
+ {
169
+ "default": null,
170
+ "name": "filename",
171
+ "type": {
172
+ "type": "<class 'str'>"
173
+ }
174
+ },
175
+ {
176
+ "default": "<from file>",
177
+ "name": "columns",
178
+ "type": {
179
+ "type": "<class 'str'>"
180
+ }
181
+ },
182
+ {
183
+ "default": "<auto>",
184
+ "name": "separator",
185
+ "type": {
186
+ "type": "<class 'str'>"
187
+ }
188
+ }
189
+ ],
190
+ "type": "basic"
191
+ },
192
+ "params": {
193
+ "columns": "<from file>",
194
+ "filename": "uploads/molecules2.csv",
195
+ "separator": "<auto>"
196
+ },
197
+ "status": "done",
198
+ "title": "Import CSV"
199
+ },
200
+ "dragHandle": ".bg-primary",
201
+ "height": 313.0,
202
+ "id": "Import CSV 1",
203
+ "position": {
204
+ "x": 13.802068621055497,
205
+ "y": -269.65065144888104
206
+ },
207
+ "type": "basic",
208
+ "width": 216.0
209
+ },
210
+ {
211
+ "data": {
212
+ "display": {
213
+ "dataframes": {
214
+ "df": {
215
+ "columns": [
216
+ "name",
217
+ "smiles",
218
+ "image"
219
+ ],
220
+ "data": [
221
+ [
222
+ "ciprofloxacin",
223
+ "C1CNCCN1c(c2)c(F)cc3c2N(C4CC4)C=C(C3=O)C(=O)O",
224
+ ""
225
+ ],
226
+ [
227
+ "caffeine",
228
+ "CN1C=NC2=C1C(=O)N(C(=O)N2C)C",
229
+ ""
230
+ ],
231
+ [
232
+ "\u03b1-d-glucopyranose",
233
+ "C([C@@H]1[C@H]([C@@H]([C@H]([C@H](O1)O)O)O)O)O",
234
+ ""
235
+ ]
236
+ ]
237
+ }
238
+ },
239
+ "other": {},
240
+ "relations": []
241
+ },
242
+ "error": null,
243
+ "input_metadata": [
244
+ {
245
+ "dataframes": {
246
+ "df": {
247
+ "columns": [
248
+ "image",
249
+ "name",
250
+ "smiles"
251
+ ]
252
+ }
253
+ },
254
+ "other": {},
255
+ "relations": []
256
+ }
257
+ ],
258
+ "meta": {
259
+ "color": "orange",
260
+ "inputs": [
261
+ {
262
+ "name": "bundle",
263
+ "position": "left",
264
+ "type": {
265
+ "type": "<class 'lynxkite_graph_analytics.core.Bundle'>"
266
+ }
267
+ }
268
+ ],
269
+ "name": "View tables",
270
+ "outputs": [],
271
+ "params": [
272
+ {
273
+ "default": 100,
274
+ "name": "limit",
275
+ "type": {
276
+ "type": "<class 'int'>"
277
+ }
278
+ }
279
+ ],
280
+ "type": "table_view"
281
+ },
282
+ "params": {
283
+ "limit": 100.0
284
+ },
285
+ "status": "done",
286
+ "title": "View tables"
287
+ },
288
+ "dragHandle": ".bg-primary",
289
+ "height": 418.0,
290
+ "id": "View tables 2",
291
+ "position": {
292
+ "x": 548.7706661684929,
293
+ "y": -316.9626796191875
294
+ },
295
+ "type": "table_view",
296
+ "width": 1116.0
297
+ },
298
+ {
299
+ "data": {
300
+ "__execution_delay": 0.0,
301
+ "collapsed": null,
302
+ "display": null,
303
+ "error": null,
304
+ "input_metadata": [
305
+ {}
306
+ ],
307
+ "meta": {
308
+ "color": "orange",
309
+ "inputs": [
310
+ {
311
+ "name": "df",
312
+ "position": "left",
313
+ "type": {
314
+ "type": "<class 'pandas.core.frame.DataFrame'>"
315
+ }
316
+ }
317
+ ],
318
+ "name": "Draw molecules",
319
+ "outputs": [
320
+ {
321
+ "name": "output",
322
+ "position": "right",
323
+ "type": {
324
+ "type": "None"
325
+ }
326
+ }
327
+ ],
328
+ "params": [
329
+ {
330
+ "default": null,
331
+ "name": "smiles_column",
332
+ "type": {
333
+ "type": "<class 'str'>"
334
+ }
335
+ },
336
+ {
337
+ "default": "image",
338
+ "name": "image_column",
339
+ "type": {
340
+ "type": "<class 'str'>"
341
+ }
342
+ }
343
+ ],
344
+ "type": "basic"
345
+ },
346
+ "params": {
347
+ "image_column": "image",
348
+ "smiles_column": "smiles"
349
+ },
350
+ "status": "done",
351
+ "title": "Draw molecules"
352
+ },
353
+ "dragHandle": ".bg-primary",
354
+ "height": 296.0,
355
+ "id": "Draw molecules 1",
356
+ "position": {
357
+ "x": 289.42386787591244,
358
+ "y": -258.0823121715324
359
+ },
360
+ "type": "basic",
361
+ "width": 212.0
362
+ }
363
+ ]
364
+ }
examples/draw_molecules.py ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from lynxkite.core.ops import op
2
+ import pandas as pd
3
+ import base64
4
+ import io
5
+
6
+
7
+ def pil_to_data(image):
8
+ buffer = io.BytesIO()
9
+ image.save(buffer, format="png")
10
+ b64 = base64.b64encode(buffer.getvalue()).decode("utf-8")
11
+ return "data:image/png;base64," + b64
12
+
13
+
14
+ def smiles_to_data(smiles):
15
+ import rdkit
16
+
17
+ m = rdkit.Chem.MolFromSmiles(smiles)
18
+ img = rdkit.Chem.Draw.MolToImage(m)
19
+ data = pil_to_data(img)
20
+ return data
21
+
22
+
23
+ @op("LynxKite Graph Analytics", "Draw molecules")
24
+ def draw_molecules(df: pd.DataFrame, *, smiles_column: str, image_column: str = "image"):
25
+ df = df.copy()
26
+ df[image_column] = df[smiles_column].apply(smiles_to_data)
27
+ return df
examples/make_image_table.py ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from lynxkite.core.ops import op
2
+ import pandas as pd
3
+ import base64
4
+
5
+
6
+ @op("LynxKite Graph Analytics", "Example image table")
7
+ def make_image_table():
8
+ svg = '<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 64 64" enable-background="new 0 0 64 64"><path d="M56 2 18.8 42.909 8 34.729 2 34.729 18.8 62 62 2z"/></svg>'
9
+ data = "data:image/svg+xml;base64," + base64.b64encode(svg.encode("utf-8")).decode("utf-8")
10
+ http = "https://upload.wikimedia.org/wikipedia/commons/2/2e/Emojione_BW_2714.svg"
11
+ return pd.DataFrame({"names": ["svg", "data", "http"], "images": [svg, data, http]})
examples/uploads/molecules2.csv ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ name,smiles
2
+ ciprofloxacin,C1CNCCN1c(c2)c(F)cc3c2N(C4CC4)C=C(C3=O)C(=O)O
3
+ caffeine,CN1C=NC2=C1C(=O)N(C(=O)N2C)C
4
+ α-d-glucopyranose,C([C@@H]1[C@H]([C@@H]([C@H]([C@H](O1)O)O)O)O)O
lynxkite-app/web/src/index.css CHANGED
@@ -274,6 +274,16 @@ body {
274
  padding: 5px 10px;
275
  width: 100%;
276
  }
 
 
 
 
 
 
 
 
 
 
277
  }
278
 
279
  .params-expander {
 
274
  padding: 5px 10px;
275
  width: 100%;
276
  }
277
+
278
+ .table-viewer {
279
+ td {
280
+ padding: 5px 10px;
281
+ }
282
+
283
+ .image-in-table {
284
+ max-height: 100px;
285
+ }
286
+ }
287
  }
288
 
289
  .params-expander {
lynxkite-app/web/src/workspace/nodes/Table.tsx CHANGED
@@ -1,6 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  export default function Table(props: any) {
2
  return (
3
- <table id={props.name || "table"}>
4
  <thead>
5
  <tr>
6
  {props.columns.map((column: string) => (
@@ -12,7 +27,9 @@ export default function Table(props: any) {
12
  {props.data.map((row: { [column: string]: any }, i: number) => (
13
  <tr key={`row-${i}`}>
14
  {props.columns.map((_column: string, j: number) => (
15
- <td key={`cell ${i}, ${j}`}>{JSON.stringify(row[j])}</td>
 
 
16
  ))}
17
  </tr>
18
  ))}
 
1
+ function Cell({ value }: { value: any }) {
2
+ if (typeof value === "string") {
3
+ if (value.startsWith("https://") || value.startsWith("data:")) {
4
+ return <img className="image-in-table" src={value} alt={value} />;
5
+ }
6
+ if (value.startsWith("<svg")) {
7
+ // A data URL is safer than just dropping it in the DOM.
8
+ const data = `data:image/svg+xml;base64,${btoa(value)}`;
9
+ return <img className="image-in-table" src={data} alt={value} />;
10
+ }
11
+ return <>{value}</>;
12
+ }
13
+ return <>{JSON.stringify(value)}</>;
14
+ }
15
+
16
  export default function Table(props: any) {
17
  return (
18
+ <table className="table-viewer">
19
  <thead>
20
  <tr>
21
  {props.columns.map((column: string) => (
 
27
  {props.data.map((row: { [column: string]: any }, i: number) => (
28
  <tr key={`row-${i}`}>
29
  {props.columns.map((_column: string, j: number) => (
30
+ <td key={`cell ${i}, ${j}`}>
31
+ <Cell value={row[j]} />
32
+ </td>
33
  ))}
34
  </tr>
35
  ))}
lynxkite-app/web/tests/graph_creation.spec.ts CHANGED
@@ -23,18 +23,22 @@ test.afterEach(async () => {
23
 
24
  test("Tables are displayed in the Graph creation box", async () => {
25
  const graphBox = await workspace.getBox("Create graph 1");
26
- const nodesTableHeader = await graphBox.locator(".graph-tables .df-head", {
27
  hasText: "nodes",
28
  });
29
- const edgesTableHeader = await graphBox.locator(".graph-tables .df-head", {
30
  hasText: "edges",
31
  });
 
 
32
  await expect(nodesTableHeader).toBeVisible();
33
  await expect(edgesTableHeader).toBeVisible();
34
- nodesTableHeader.click();
35
- await expect(graphBox.locator("#nodes-table")).toBeVisible();
36
- edgesTableHeader.click();
37
- await expect(graphBox.locator("#edges-table")).toBeVisible();
 
 
38
  });
39
 
40
  test("Adding and removing relationships", async () => {
 
23
 
24
  test("Tables are displayed in the Graph creation box", async () => {
25
  const graphBox = await workspace.getBox("Create graph 1");
26
+ const nodesTableHeader = graphBox.locator(".graph-tables .df-head", {
27
  hasText: "nodes",
28
  });
29
+ const edgesTableHeader = graphBox.locator(".graph-tables .df-head", {
30
  hasText: "edges",
31
  });
32
+ const nodesTable = nodesTableHeader.locator("xpath=//following-sibling::table[1]");
33
+ const edgesTable = edgesTableHeader.locator("xpath=//following-sibling::table[1]");
34
  await expect(nodesTableHeader).toBeVisible();
35
  await expect(edgesTableHeader).toBeVisible();
36
+ await expect(nodesTable).not.toBeVisible();
37
+ await expect(edgesTable).not.toBeVisible();
38
+ await nodesTableHeader.click();
39
+ await expect(nodesTable).toBeVisible();
40
+ await edgesTableHeader.click();
41
+ await expect(edgesTable).toBeVisible();
42
  });
43
 
44
  test("Adding and removing relationships", async () => {