Spaces:
Running
Running
Generative drug screening Blueprint
Browse files
examples/Generative drug screening.lynxkite.json
CHANGED
The diff for this file is too large to render.
See raw diff
|
|
lynxkite-bio/src/lynxkite_bio/nims.py
CHANGED
@@ -1,32 +1,37 @@
|
|
1 |
"""Wrappers for BioNeMo NIMs."""
|
2 |
|
3 |
-
from enum import Enum
|
4 |
from lynxkite_graph_analytics import Bundle
|
5 |
from lynxkite.core import ops
|
6 |
import joblib
|
|
|
|
|
7 |
import os
|
8 |
|
9 |
-
NIM_URLS = os.environ.get("NIM_URLS", "http://localhost:8000").split(",")
|
10 |
|
11 |
mem = joblib.Memory(".joblib-cache")
|
12 |
ENV = "LynxKite Graph Analytics"
|
13 |
op = ops.op_registration(ENV)
|
14 |
|
|
|
15 |
|
16 |
-
class MSASearchTypes(Enum):
|
17 |
-
ALPHAFOLD2 = "ALPHAFOLD2"
|
18 |
-
ESM2 = "ESM2"
|
19 |
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
|
31 |
|
32 |
@op("MSA-search")
|
@@ -38,14 +43,25 @@ def msa_search(
|
|
38 |
protein_column: str,
|
39 |
e_value: float = 0.0001,
|
40 |
iterations: int = 1,
|
41 |
-
search_type:
|
42 |
-
output_alignment_formats:
|
43 |
-
|
44 |
-
AlignmentFormats.A3M,
|
45 |
-
],
|
46 |
-
databases: str = '["Uniref30_2302", "colabfold_envdb_202108", "PDB70_220313"]',
|
47 |
):
|
48 |
bundle = bundle.copy()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
return bundle
|
50 |
|
51 |
|
@@ -58,11 +74,24 @@ def query_openfold2(
|
|
58 |
protein_column: str,
|
59 |
alignment_table: str,
|
60 |
alignment_column: str,
|
61 |
-
|
62 |
-
|
63 |
-
databases: str = '["Uniref30_2302", "colabfold_envdb_202108", "PDB70_220313"]',
|
64 |
):
|
65 |
bundle = bundle.copy()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
return bundle
|
67 |
|
68 |
|
@@ -113,6 +142,20 @@ def query_genmol(
|
|
113 |
scoring: str = "QED",
|
114 |
):
|
115 |
bundle = bundle.copy()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
116 |
return bundle
|
117 |
|
118 |
|
@@ -126,8 +169,35 @@ def query_diffdock(
|
|
126 |
protein_column: str,
|
127 |
ligand_table: str,
|
128 |
ligand_column: str,
|
|
|
129 |
num_poses=10,
|
130 |
time_divisions=20,
|
131 |
num_steps=18,
|
132 |
):
|
133 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
"""Wrappers for BioNeMo NIMs."""
|
2 |
|
|
|
3 |
from lynxkite_graph_analytics import Bundle
|
4 |
from lynxkite.core import ops
|
5 |
import joblib
|
6 |
+
import requests
|
7 |
+
import pandas as pd
|
8 |
import os
|
9 |
|
|
|
10 |
|
11 |
mem = joblib.Memory(".joblib-cache")
|
12 |
ENV = "LynxKite Graph Analytics"
|
13 |
op = ops.op_registration(ENV)
|
14 |
|
15 |
+
key = os.getenv("NVCF_RUN_KEY")
|
16 |
|
|
|
|
|
|
|
17 |
|
18 |
+
def query_bionemo_nim(
|
19 |
+
url: str,
|
20 |
+
payload: dict,
|
21 |
+
):
|
22 |
+
headers = {
|
23 |
+
"Authorization": f"Bearer {key}",
|
24 |
+
"NVCF-POLL-SECONDS": "500",
|
25 |
+
"Content-Type": "application/json",
|
26 |
+
}
|
27 |
+
try:
|
28 |
+
print(f"Sending request to {url}")
|
29 |
+
response = requests.post(url, json=payload, headers=headers)
|
30 |
+
print(f"Received response from {url}", response.status_code)
|
31 |
+
response.raise_for_status()
|
32 |
+
return response.json()
|
33 |
+
except requests.exceptions.RequestException as e:
|
34 |
+
raise ValueError(f"Query failed: {e}")
|
35 |
|
36 |
|
37 |
@op("MSA-search")
|
|
|
43 |
protein_column: str,
|
44 |
e_value: float = 0.0001,
|
45 |
iterations: int = 1,
|
46 |
+
search_type: str = "alphafold2",
|
47 |
+
output_alignment_formats: str = "a3m",
|
48 |
+
databases: str = "Uniref30_2302,colabfold_envdb_202108",
|
|
|
|
|
|
|
49 |
):
|
50 |
bundle = bundle.copy()
|
51 |
+
response = query_bionemo_nim(
|
52 |
+
url="https://health.api.nvidia.com/v1/biology/colabfold/msa-search/predict",
|
53 |
+
payload={
|
54 |
+
"sequence": bundle.dfs[protein_table][protein_column].iloc[0],
|
55 |
+
"e_value": e_value,
|
56 |
+
"iterations": iterations,
|
57 |
+
"search_type": search_type,
|
58 |
+
"output_alignment_formats": [
|
59 |
+
format for format in output_alignment_formats.split(",")
|
60 |
+
],
|
61 |
+
"databases": [db for db in databases.split(",")],
|
62 |
+
},
|
63 |
+
)
|
64 |
+
bundle.dfs[protein_table]["alignments"] = [response["alignments"]]
|
65 |
return bundle
|
66 |
|
67 |
|
|
|
74 |
protein_column: str,
|
75 |
alignment_table: str,
|
76 |
alignment_column: str,
|
77 |
+
selected_models: str = "1,2",
|
78 |
+
relax_prediction: bool = False,
|
|
|
79 |
):
|
80 |
bundle = bundle.copy()
|
81 |
+
protein = bundle.dfs[protein_table][protein_column].iloc[0]
|
82 |
+
alignments = bundle.dfs[alignment_table][alignment_column].iloc[0]
|
83 |
+
selected_models = [int(model) for model in selected_models.split(",")]
|
84 |
+
response = query_bionemo_nim(
|
85 |
+
url="https://health.api.nvidia.com/v1/biology/openfold/openfold2/predict-structure-from-msa-and-template",
|
86 |
+
payload={
|
87 |
+
"sequence": protein,
|
88 |
+
"alignments": alignments,
|
89 |
+
"selected_models": selected_models,
|
90 |
+
"relax_prediction": relax_prediction,
|
91 |
+
},
|
92 |
+
)
|
93 |
+
folded_protein = response["structures_in_ranked_order"].pop(0)["structure"]
|
94 |
+
bundle.dfs[protein_table]["folded_protein"] = folded_protein
|
95 |
return bundle
|
96 |
|
97 |
|
|
|
142 |
scoring: str = "QED",
|
143 |
):
|
144 |
bundle = bundle.copy()
|
145 |
+
|
146 |
+
response = query_bionemo_nim(
|
147 |
+
url="https://health.api.nvidia.com/v1/biology/nvidia/genmol/generate",
|
148 |
+
payload={
|
149 |
+
"smiles": bundle.dfs[molecule_table][molecule_column].iloc[0],
|
150 |
+
"num_molecules": num_molecules,
|
151 |
+
"temperature": temperature,
|
152 |
+
"noise": noise,
|
153 |
+
"step_size": step_size,
|
154 |
+
"scoring": scoring,
|
155 |
+
},
|
156 |
+
)
|
157 |
+
generated_ligands = "\n".join([v["smiles"] for v in response["molecules"]])
|
158 |
+
bundle.dfs[molecule_table]["ligands"] = generated_ligands
|
159 |
return bundle
|
160 |
|
161 |
|
|
|
169 |
protein_column: str,
|
170 |
ligand_table: str,
|
171 |
ligand_column: str,
|
172 |
+
ligand_file_type: str = "txt",
|
173 |
num_poses=10,
|
174 |
time_divisions=20,
|
175 |
num_steps=18,
|
176 |
):
|
177 |
+
response = query_bionemo_nim(
|
178 |
+
url="https://health.api.nvidia.com/v1/biology/mit/diffdock",
|
179 |
+
payload={
|
180 |
+
"protein": proteins.dfs[protein_table][protein_column].iloc[0],
|
181 |
+
"ligand": ligands.dfs[ligand_table][ligand_column].iloc[0],
|
182 |
+
"ligand_file_type": ligand_file_type,
|
183 |
+
"num_poses": num_poses,
|
184 |
+
"time_divisions": time_divisions,
|
185 |
+
"num_steps": num_steps,
|
186 |
+
},
|
187 |
+
)
|
188 |
+
bundle = Bundle()
|
189 |
+
bundle.dfs["diffdock_table"] = pd.DataFrame()
|
190 |
+
bundle.dfs["diffdock_table"]["protein"] = [response["protein"]] * len(
|
191 |
+
response["status"]
|
192 |
+
)
|
193 |
+
bundle.dfs["diffdock_table"]["ligand"] = [response["ligand"]] * len(
|
194 |
+
response["status"]
|
195 |
+
)
|
196 |
+
bundle.dfs["diffdock_table"]["trajectory"] = response["trajectory"]
|
197 |
+
bundle.dfs["diffdock_table"]["ligand_positions"] = response["ligand_positions"]
|
198 |
+
bundle.dfs["diffdock_table"]["position_confidence"] = response[
|
199 |
+
"position_confidence"
|
200 |
+
]
|
201 |
+
bundle.dfs["diffdock_table"]["status"] = response["status"]
|
202 |
+
|
203 |
+
return bundle
|