Spaces:
Running
Running
Split ops from infrastructure code.
Browse files- lynxkite-graph-analytics/src/lynxkite_graph_analytics/__init__.py +1 -1
- lynxkite-graph-analytics/src/lynxkite_graph_analytics/lynxkite_ops.py +7 -7
- lynxkite-graph-analytics/src/lynxkite_graph_analytics/pytorch/__init__.py +2 -0
- lynxkite-graph-analytics/src/lynxkite_graph_analytics/{pytorch_model_ops.py → pytorch/core.py} +1 -114
- lynxkite-graph-analytics/src/lynxkite_graph_analytics/pytorch/ops.py +118 -0
- lynxkite-graph-analytics/tests/test_pytorch_model_ops.py +9 -9
lynxkite-graph-analytics/src/lynxkite_graph_analytics/__init__.py
CHANGED
@@ -13,7 +13,7 @@ pd.options.mode.copy_on_write = True # Prepare for Pandas 3.0.
|
|
13 |
from .core import * # noqa (easier access for core classes)
|
14 |
from . import lynxkite_ops # noqa (imported to trigger registration)
|
15 |
from . import networkx_ops # noqa (imported to trigger registration)
|
16 |
-
from . import
|
17 |
|
18 |
if os.environ.get("LYNXKITE_BIONEMO_INSTALLED", "").strip().lower() == "true":
|
19 |
from . import bionemo_ops # noqa (imported to trigger registration)
|
|
|
13 |
from .core import * # noqa (easier access for core classes)
|
14 |
from . import lynxkite_ops # noqa (imported to trigger registration)
|
15 |
from . import networkx_ops # noqa (imported to trigger registration)
|
16 |
+
from . import pytorch # noqa (imported to trigger registration)
|
17 |
|
18 |
if os.environ.get("LYNXKITE_BIONEMO_INSTALLED", "").strip().lower() == "true":
|
19 |
from . import bionemo_ops # noqa (imported to trigger registration)
|
lynxkite-graph-analytics/src/lynxkite_graph_analytics/lynxkite_ops.py
CHANGED
@@ -8,7 +8,7 @@ from lynxkite.core import ops
|
|
8 |
from collections import deque
|
9 |
|
10 |
from tqdm import tqdm
|
11 |
-
from . import core,
|
12 |
from lynxkite.core import workspace
|
13 |
import grandcypher
|
14 |
import joblib
|
@@ -347,7 +347,7 @@ def define_model(
|
|
347 |
assert model_workspace, "Model workspace is unset."
|
348 |
ws = load_ws(model_workspace)
|
349 |
# Build the model without inputs, to get its interface.
|
350 |
-
m =
|
351 |
m.source_workspace = model_workspace
|
352 |
bundle = bundle.copy()
|
353 |
bundle.other[save_as] = m
|
@@ -356,15 +356,15 @@ def define_model(
|
|
356 |
|
357 |
# These contain the same mapping, but they get different UIs.
|
358 |
# For inputs, you select existing columns. For outputs, you can create new columns.
|
359 |
-
class ModelInferenceInputMapping(
|
360 |
pass
|
361 |
|
362 |
|
363 |
-
class ModelTrainingInputMapping(
|
364 |
pass
|
365 |
|
366 |
|
367 |
-
class ModelOutputMapping(
|
368 |
pass
|
369 |
|
370 |
|
@@ -379,7 +379,7 @@ def train_model(
|
|
379 |
):
|
380 |
"""Trains the selected model on the selected dataset. Most training parameters are set in the model definition."""
|
381 |
m = bundle.other[model_name].copy()
|
382 |
-
inputs =
|
383 |
t = tqdm(range(epochs), desc="Training model")
|
384 |
losses = []
|
385 |
for _ in t:
|
@@ -406,7 +406,7 @@ def model_inference(
|
|
406 |
return ops.Result(bundle, error="Mapping is unset.")
|
407 |
m = bundle.other[model_name]
|
408 |
assert m.trained, "The model is not trained."
|
409 |
-
inputs =
|
410 |
outputs = m.inference(inputs)
|
411 |
bundle = bundle.copy()
|
412 |
copied = set()
|
|
|
8 |
from collections import deque
|
9 |
|
10 |
from tqdm import tqdm
|
11 |
+
from . import core, pytorch
|
12 |
from lynxkite.core import workspace
|
13 |
import grandcypher
|
14 |
import joblib
|
|
|
347 |
assert model_workspace, "Model workspace is unset."
|
348 |
ws = load_ws(model_workspace)
|
349 |
# Build the model without inputs, to get its interface.
|
350 |
+
m = pytorch.core.build_model(ws)
|
351 |
m.source_workspace = model_workspace
|
352 |
bundle = bundle.copy()
|
353 |
bundle.other[save_as] = m
|
|
|
356 |
|
357 |
# These contain the same mapping, but they get different UIs.
|
358 |
# For inputs, you select existing columns. For outputs, you can create new columns.
|
359 |
+
class ModelInferenceInputMapping(pytorch.core.ModelMapping):
|
360 |
pass
|
361 |
|
362 |
|
363 |
+
class ModelTrainingInputMapping(pytorch.core.ModelMapping):
|
364 |
pass
|
365 |
|
366 |
|
367 |
+
class ModelOutputMapping(pytorch.core.ModelMapping):
|
368 |
pass
|
369 |
|
370 |
|
|
|
379 |
):
|
380 |
"""Trains the selected model on the selected dataset. Most training parameters are set in the model definition."""
|
381 |
m = bundle.other[model_name].copy()
|
382 |
+
inputs = pytorch.core.to_tensors(bundle, input_mapping)
|
383 |
t = tqdm(range(epochs), desc="Training model")
|
384 |
losses = []
|
385 |
for _ in t:
|
|
|
406 |
return ops.Result(bundle, error="Mapping is unset.")
|
407 |
m = bundle.other[model_name]
|
408 |
assert m.trained, "The model is not trained."
|
409 |
+
inputs = pytorch.core.to_tensors(bundle, input_mapping)
|
410 |
outputs = m.inference(inputs)
|
411 |
bundle = bundle.copy()
|
412 |
copied = set()
|
lynxkite-graph-analytics/src/lynxkite_graph_analytics/pytorch/__init__.py
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
from . import core # noqa
|
2 |
+
from . import ops # noqa
|
lynxkite-graph-analytics/src/lynxkite_graph_analytics/{pytorch_model_ops.py → pytorch/core.py}
RENAMED
@@ -1,16 +1,14 @@
|
|
1 |
"""Boxes for defining PyTorch models."""
|
2 |
|
3 |
import copy
|
4 |
-
import enum
|
5 |
import graphlib
|
6 |
|
7 |
import pydantic
|
8 |
from lynxkite.core import ops, workspace
|
9 |
-
from lynxkite.core.ops import Parameter as P
|
10 |
import torch
|
11 |
import torch_geometric.nn as pyg_nn
|
12 |
import dataclasses
|
13 |
-
from
|
14 |
|
15 |
ENV = "PyTorch model"
|
16 |
|
@@ -42,117 +40,6 @@ def reg(name, inputs=[], outputs=None, params=[]):
|
|
42 |
)
|
43 |
|
44 |
|
45 |
-
reg("Input: tensor", outputs=["output"], params=[P.basic("name")])
|
46 |
-
reg("Input: graph edges", outputs=["edges"])
|
47 |
-
reg("Input: sequential", outputs=["y"])
|
48 |
-
|
49 |
-
reg("LSTM", inputs=["x", "h"], outputs=["x", "h"])
|
50 |
-
reg(
|
51 |
-
"Neural ODE",
|
52 |
-
inputs=["x"],
|
53 |
-
params=[
|
54 |
-
P.basic("relative_tolerance"),
|
55 |
-
P.basic("absolute_tolerance"),
|
56 |
-
P.options(
|
57 |
-
"method",
|
58 |
-
[
|
59 |
-
"dopri8",
|
60 |
-
"dopri5",
|
61 |
-
"bosh3",
|
62 |
-
"fehlberg2",
|
63 |
-
"adaptive_heun",
|
64 |
-
"euler",
|
65 |
-
"midpoint",
|
66 |
-
"rk4",
|
67 |
-
"explicit_adams",
|
68 |
-
"implicit_adams",
|
69 |
-
],
|
70 |
-
),
|
71 |
-
],
|
72 |
-
)
|
73 |
-
|
74 |
-
|
75 |
-
reg("Attention", inputs=["q", "k", "v"], outputs=["x", "weights"])
|
76 |
-
reg("LayerNorm", inputs=["x"])
|
77 |
-
reg("Dropout", inputs=["x"], params=[P.basic("p", 0.5)])
|
78 |
-
|
79 |
-
|
80 |
-
@op("Linear")
|
81 |
-
def linear(x, *, output_dim=1024):
|
82 |
-
return pyg_nn.Linear(-1, output_dim)
|
83 |
-
|
84 |
-
|
85 |
-
class ActivationTypes(enum.Enum):
|
86 |
-
ReLU = "ReLU"
|
87 |
-
Leaky_ReLU = "Leaky ReLU"
|
88 |
-
Tanh = "Tanh"
|
89 |
-
Mish = "Mish"
|
90 |
-
|
91 |
-
|
92 |
-
@op("Activation")
|
93 |
-
def activation(x, *, type: ActivationTypes = ActivationTypes.ReLU):
|
94 |
-
return getattr(torch.nn.functional, type.name.lower().replace(" ", "_"))
|
95 |
-
|
96 |
-
|
97 |
-
@op("MSE loss")
|
98 |
-
def mse_loss(x, y):
|
99 |
-
return torch.nn.functional.mse_loss
|
100 |
-
|
101 |
-
|
102 |
-
reg("Softmax", inputs=["x"])
|
103 |
-
reg(
|
104 |
-
"Graph conv",
|
105 |
-
inputs=["x", "edges"],
|
106 |
-
outputs=["x"],
|
107 |
-
params=[P.options("type", ["GCNConv", "GATConv", "GATv2Conv", "SAGEConv"])],
|
108 |
-
)
|
109 |
-
reg("Concatenate", inputs=["a", "b"], outputs=["x"])
|
110 |
-
reg("Add", inputs=["a", "b"], outputs=["x"])
|
111 |
-
reg("Subtract", inputs=["a", "b"], outputs=["x"])
|
112 |
-
reg("Multiply", inputs=["a", "b"], outputs=["x"])
|
113 |
-
reg("Triplet margin loss", inputs=["x", "x_pos", "x_neg"], outputs=["loss"])
|
114 |
-
reg("Cross-entropy loss", inputs=["x", "y"], outputs=["loss"])
|
115 |
-
reg(
|
116 |
-
"Optimizer",
|
117 |
-
inputs=["loss"],
|
118 |
-
outputs=[],
|
119 |
-
params=[
|
120 |
-
P.options(
|
121 |
-
"type",
|
122 |
-
[
|
123 |
-
"AdamW",
|
124 |
-
"Adafactor",
|
125 |
-
"Adagrad",
|
126 |
-
"SGD",
|
127 |
-
"Lion",
|
128 |
-
"Paged AdamW",
|
129 |
-
"Galore AdamW",
|
130 |
-
],
|
131 |
-
),
|
132 |
-
P.basic("lr", 0.001),
|
133 |
-
],
|
134 |
-
)
|
135 |
-
|
136 |
-
ops.register_passive_op(
|
137 |
-
ENV,
|
138 |
-
"Repeat",
|
139 |
-
inputs=[ops.Input(name="input", position="top", type="tensor")],
|
140 |
-
outputs=[ops.Output(name="output", position="bottom", type="tensor")],
|
141 |
-
params=[
|
142 |
-
ops.Parameter.basic("times", 1, int),
|
143 |
-
ops.Parameter.basic("same_weights", False, bool),
|
144 |
-
],
|
145 |
-
)
|
146 |
-
|
147 |
-
ops.register_passive_op(
|
148 |
-
ENV,
|
149 |
-
"Recurrent chain",
|
150 |
-
inputs=[ops.Input(name="input", position="top", type="tensor")],
|
151 |
-
outputs=[ops.Output(name="output", position="bottom", type="tensor")],
|
152 |
-
params=[],
|
153 |
-
)
|
154 |
-
|
155 |
-
|
156 |
def _to_id(*strings: str) -> str:
|
157 |
"""Replaces all non-alphanumeric characters with underscores."""
|
158 |
return "_".join("".join(c if c.isalnum() else "_" for c in s) for s in strings)
|
|
|
1 |
"""Boxes for defining PyTorch models."""
|
2 |
|
3 |
import copy
|
|
|
4 |
import graphlib
|
5 |
|
6 |
import pydantic
|
7 |
from lynxkite.core import ops, workspace
|
|
|
8 |
import torch
|
9 |
import torch_geometric.nn as pyg_nn
|
10 |
import dataclasses
|
11 |
+
from .. import core
|
12 |
|
13 |
ENV = "PyTorch model"
|
14 |
|
|
|
40 |
)
|
41 |
|
42 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
def _to_id(*strings: str) -> str:
|
44 |
"""Replaces all non-alphanumeric characters with underscores."""
|
45 |
return "_".join("".join(c if c.isalnum() else "_" for c in s) for s in strings)
|
lynxkite-graph-analytics/src/lynxkite_graph_analytics/pytorch/ops.py
ADDED
@@ -0,0 +1,118 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Boxes for defining PyTorch models."""
|
2 |
+
|
3 |
+
import enum
|
4 |
+
from lynxkite.core import ops
|
5 |
+
from lynxkite.core.ops import Parameter as P
|
6 |
+
import torch
|
7 |
+
import torch_geometric.nn as pyg_nn
|
8 |
+
from .core import op, reg, ENV
|
9 |
+
|
10 |
+
reg("Input: tensor", outputs=["output"], params=[P.basic("name")])
|
11 |
+
reg("Input: graph edges", outputs=["edges"])
|
12 |
+
reg("Input: sequential", outputs=["y"])
|
13 |
+
|
14 |
+
reg("LSTM", inputs=["x", "h"], outputs=["x", "h"])
|
15 |
+
reg(
|
16 |
+
"Neural ODE",
|
17 |
+
inputs=["x"],
|
18 |
+
params=[
|
19 |
+
P.basic("relative_tolerance"),
|
20 |
+
P.basic("absolute_tolerance"),
|
21 |
+
P.options(
|
22 |
+
"method",
|
23 |
+
[
|
24 |
+
"dopri8",
|
25 |
+
"dopri5",
|
26 |
+
"bosh3",
|
27 |
+
"fehlberg2",
|
28 |
+
"adaptive_heun",
|
29 |
+
"euler",
|
30 |
+
"midpoint",
|
31 |
+
"rk4",
|
32 |
+
"explicit_adams",
|
33 |
+
"implicit_adams",
|
34 |
+
],
|
35 |
+
),
|
36 |
+
],
|
37 |
+
)
|
38 |
+
|
39 |
+
|
40 |
+
reg("Attention", inputs=["q", "k", "v"], outputs=["x", "weights"])
|
41 |
+
reg("LayerNorm", inputs=["x"])
|
42 |
+
reg("Dropout", inputs=["x"], params=[P.basic("p", 0.5)])
|
43 |
+
|
44 |
+
|
45 |
+
@op("Linear")
|
46 |
+
def linear(x, *, output_dim=1024):
|
47 |
+
return pyg_nn.Linear(-1, output_dim)
|
48 |
+
|
49 |
+
|
50 |
+
class ActivationTypes(enum.Enum):
|
51 |
+
ReLU = "ReLU"
|
52 |
+
Leaky_ReLU = "Leaky ReLU"
|
53 |
+
Tanh = "Tanh"
|
54 |
+
Mish = "Mish"
|
55 |
+
|
56 |
+
|
57 |
+
@op("Activation")
|
58 |
+
def activation(x, *, type: ActivationTypes = ActivationTypes.ReLU):
|
59 |
+
return getattr(torch.nn.functional, type.name.lower().replace(" ", "_"))
|
60 |
+
|
61 |
+
|
62 |
+
@op("MSE loss")
|
63 |
+
def mse_loss(x, y):
|
64 |
+
return torch.nn.functional.mse_loss
|
65 |
+
|
66 |
+
|
67 |
+
reg("Softmax", inputs=["x"])
|
68 |
+
reg(
|
69 |
+
"Graph conv",
|
70 |
+
inputs=["x", "edges"],
|
71 |
+
outputs=["x"],
|
72 |
+
params=[P.options("type", ["GCNConv", "GATConv", "GATv2Conv", "SAGEConv"])],
|
73 |
+
)
|
74 |
+
reg("Concatenate", inputs=["a", "b"], outputs=["x"])
|
75 |
+
reg("Add", inputs=["a", "b"], outputs=["x"])
|
76 |
+
reg("Subtract", inputs=["a", "b"], outputs=["x"])
|
77 |
+
reg("Multiply", inputs=["a", "b"], outputs=["x"])
|
78 |
+
reg("Triplet margin loss", inputs=["x", "x_pos", "x_neg"], outputs=["loss"])
|
79 |
+
reg("Cross-entropy loss", inputs=["x", "y"], outputs=["loss"])
|
80 |
+
reg(
|
81 |
+
"Optimizer",
|
82 |
+
inputs=["loss"],
|
83 |
+
outputs=[],
|
84 |
+
params=[
|
85 |
+
P.options(
|
86 |
+
"type",
|
87 |
+
[
|
88 |
+
"AdamW",
|
89 |
+
"Adafactor",
|
90 |
+
"Adagrad",
|
91 |
+
"SGD",
|
92 |
+
"Lion",
|
93 |
+
"Paged AdamW",
|
94 |
+
"Galore AdamW",
|
95 |
+
],
|
96 |
+
),
|
97 |
+
P.basic("lr", 0.001),
|
98 |
+
],
|
99 |
+
)
|
100 |
+
|
101 |
+
ops.register_passive_op(
|
102 |
+
ENV,
|
103 |
+
"Repeat",
|
104 |
+
inputs=[ops.Input(name="input", position="top", type="tensor")],
|
105 |
+
outputs=[ops.Output(name="output", position="bottom", type="tensor")],
|
106 |
+
params=[
|
107 |
+
ops.Parameter.basic("times", 1, int),
|
108 |
+
ops.Parameter.basic("same_weights", False, bool),
|
109 |
+
],
|
110 |
+
)
|
111 |
+
|
112 |
+
ops.register_passive_op(
|
113 |
+
ENV,
|
114 |
+
"Recurrent chain",
|
115 |
+
inputs=[ops.Input(name="input", position="top", type="tensor")],
|
116 |
+
outputs=[ops.Output(name="output", position="bottom", type="tensor")],
|
117 |
+
params=[],
|
118 |
+
)
|
lynxkite-graph-analytics/tests/test_pytorch_model_ops.py
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
from lynxkite.core import workspace
|
2 |
-
from lynxkite_graph_analytics import
|
3 |
import torch
|
4 |
import pytest
|
5 |
|
@@ -33,11 +33,11 @@ def make_ws(env, nodes: dict[str, dict], edges: list[tuple[str, str]]):
|
|
33 |
return ws
|
34 |
|
35 |
|
36 |
-
def summarize_layers(m:
|
37 |
return "".join(str(e)[0] for e in m.model)
|
38 |
|
39 |
|
40 |
-
def summarize_connections(m:
|
41 |
return " ".join(
|
42 |
"".join(n[0] for n in c.param_names) + "->" + "".join(n[0] for n in c.return_names)
|
43 |
for c in m.model._children
|
@@ -46,7 +46,7 @@ def summarize_connections(m: pytorch_model_ops.ModelConfig) -> str:
|
|
46 |
|
47 |
async def test_build_model():
|
48 |
ws = make_ws(
|
49 |
-
|
50 |
{
|
51 |
"emb": {"title": "Input: tensor"},
|
52 |
"lin": {"title": "Linear", "output_dim": 4},
|
@@ -65,7 +65,7 @@ async def test_build_model():
|
|
65 |
)
|
66 |
x = torch.rand(100, 4)
|
67 |
y = x + 1
|
68 |
-
m =
|
69 |
for i in range(1000):
|
70 |
loss = m.train({"emb_output": x, "label_output": y})
|
71 |
assert loss < 0.1
|
@@ -77,7 +77,7 @@ async def test_build_model():
|
|
77 |
async def test_build_model_with_repeat():
|
78 |
def repeated_ws(times):
|
79 |
return make_ws(
|
80 |
-
|
81 |
{
|
82 |
"emb": {"title": "Input: tensor"},
|
83 |
"lin": {"title": "Linear", "output_dim": 8},
|
@@ -99,17 +99,17 @@ async def test_build_model_with_repeat():
|
|
99 |
)
|
100 |
|
101 |
# 1 repetition
|
102 |
-
m =
|
103 |
assert summarize_layers(m) == "IL<II"
|
104 |
assert summarize_connections(m) == "e->S S->l l->a a->E E->E"
|
105 |
|
106 |
# 2 repetitions
|
107 |
-
m =
|
108 |
assert summarize_layers(m) == "IL<IL<II"
|
109 |
assert summarize_connections(m) == "e->S S->l l->a a->S S->l l->a a->E E->E"
|
110 |
|
111 |
# 3 repetitions
|
112 |
-
m =
|
113 |
assert summarize_layers(m) == "IL<IL<IL<II"
|
114 |
assert summarize_connections(m) == "e->S S->l l->a a->S S->l l->a a->S S->l l->a a->E E->E"
|
115 |
|
|
|
1 |
from lynxkite.core import workspace
|
2 |
+
from lynxkite_graph_analytics import pytorch
|
3 |
import torch
|
4 |
import pytest
|
5 |
|
|
|
33 |
return ws
|
34 |
|
35 |
|
36 |
+
def summarize_layers(m: pytorch.core.ModelConfig) -> str:
|
37 |
return "".join(str(e)[0] for e in m.model)
|
38 |
|
39 |
|
40 |
+
def summarize_connections(m: pytorch.core.ModelConfig) -> str:
|
41 |
return " ".join(
|
42 |
"".join(n[0] for n in c.param_names) + "->" + "".join(n[0] for n in c.return_names)
|
43 |
for c in m.model._children
|
|
|
46 |
|
47 |
async def test_build_model():
|
48 |
ws = make_ws(
|
49 |
+
pytorch.core.ENV,
|
50 |
{
|
51 |
"emb": {"title": "Input: tensor"},
|
52 |
"lin": {"title": "Linear", "output_dim": 4},
|
|
|
65 |
)
|
66 |
x = torch.rand(100, 4)
|
67 |
y = x + 1
|
68 |
+
m = pytorch.core.build_model(ws)
|
69 |
for i in range(1000):
|
70 |
loss = m.train({"emb_output": x, "label_output": y})
|
71 |
assert loss < 0.1
|
|
|
77 |
async def test_build_model_with_repeat():
|
78 |
def repeated_ws(times):
|
79 |
return make_ws(
|
80 |
+
pytorch.core.ENV,
|
81 |
{
|
82 |
"emb": {"title": "Input: tensor"},
|
83 |
"lin": {"title": "Linear", "output_dim": 8},
|
|
|
99 |
)
|
100 |
|
101 |
# 1 repetition
|
102 |
+
m = pytorch.core.build_model(repeated_ws(1))
|
103 |
assert summarize_layers(m) == "IL<II"
|
104 |
assert summarize_connections(m) == "e->S S->l l->a a->E E->E"
|
105 |
|
106 |
# 2 repetitions
|
107 |
+
m = pytorch.core.build_model(repeated_ws(2))
|
108 |
assert summarize_layers(m) == "IL<IL<II"
|
109 |
assert summarize_connections(m) == "e->S S->l l->a a->S S->l l->a a->E E->E"
|
110 |
|
111 |
# 3 repetitions
|
112 |
+
m = pytorch.core.build_model(repeated_ws(3))
|
113 |
assert summarize_layers(m) == "IL<IL<IL<II"
|
114 |
assert summarize_connections(m) == "e->S S->l l->a a->S S->l l->a a->S S->l l->a a->E E->E"
|
115 |
|