Spaces:
Running
Running
Merge remote-tracking branch 'origin/main' into darabos-open-source-merge
Browse files
lynxkite-graph-analytics/.dockerignore
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
lynxkite_data
|
2 |
+
lynxkite_crdt_data
|
3 |
+
.venv
|
lynxkite-graph-analytics/Dockerfile.bionemo
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
FROM nvcr.io/nvidia/clara/bionemo-framework:nightly
|
2 |
+
|
3 |
+
ENV LYNXKITE_BIONEMO_INSTALLED=true
|
4 |
+
|
5 |
+
WORKDIR /app
|
6 |
+
|
7 |
+
# Download and install nvm
|
8 |
+
RUN curl -o- https://raw.githubusercontent.com/nvm-sh/nvm/v0.39.2/install.sh | bash
|
9 |
+
RUN echo node > .nvmrc
|
10 |
+
RUN source /root/.nvm/nvm.sh --install
|
11 |
+
|
12 |
+
COPY . /app
|
13 |
+
|
14 |
+
RUN uv pip install -e lynxkite-core/[dev] -e lynxkite-app/[dev] -e lynxkite-graph-analytics/[dev] -e lynxkite-bio -e lynxkite-pillow-example/
|
15 |
+
|
16 |
+
# bionemo cellxgene_census needs this version of numpy
|
17 |
+
RUN uv pip install numpy==1.26.4
|
18 |
+
|
19 |
+
ENV LYNXKITE_DATA=examples
|
20 |
+
|
21 |
+
CMD ["lynxkite"]
|
lynxkite-graph-analytics/src/lynxkite_graph_analytics/bionemo_ops.py
ADDED
@@ -0,0 +1,493 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""BioNeMo related operations
|
2 |
+
|
3 |
+
The intention is to showcase how BioNeMo can be integrated with LynxKite. This should be
|
4 |
+
considered as a reference implementation and not a production ready code.
|
5 |
+
The operations are quite specific for this example notebook:
|
6 |
+
https://github.com/NVIDIA/bionemo-framework/blob/main/docs/docs/user-guide/examples/bionemo-geneformer/geneformer-celltype-classification.ipynb
|
7 |
+
"""
|
8 |
+
|
9 |
+
from lynxkite.core import ops
|
10 |
+
import requests
|
11 |
+
import tarfile
|
12 |
+
import os
|
13 |
+
from collections import Counter
|
14 |
+
from . import core
|
15 |
+
import numpy as np
|
16 |
+
import torch
|
17 |
+
from pathlib import Path
|
18 |
+
import random
|
19 |
+
from contextlib import contextmanager
|
20 |
+
import cellxgene_census # TODO: This needs numpy < 2
|
21 |
+
import tempfile
|
22 |
+
from sklearn.ensemble import RandomForestClassifier
|
23 |
+
from sklearn.pipeline import Pipeline
|
24 |
+
from sklearn.model_selection import StratifiedKFold, cross_validate
|
25 |
+
from sklearn.metrics import (
|
26 |
+
make_scorer,
|
27 |
+
accuracy_score,
|
28 |
+
precision_score,
|
29 |
+
recall_score,
|
30 |
+
f1_score,
|
31 |
+
roc_auc_score,
|
32 |
+
confusion_matrix,
|
33 |
+
)
|
34 |
+
from sklearn.decomposition import PCA
|
35 |
+
from sklearn.model_selection import cross_val_predict
|
36 |
+
from sklearn.preprocessing import LabelEncoder
|
37 |
+
from bionemo.scdl.io.single_cell_collection import SingleCellCollection
|
38 |
+
|
39 |
+
import scanpy
|
40 |
+
|
41 |
+
|
42 |
+
op = ops.op_registration(core.ENV)
|
43 |
+
DATA_PATH = Path("/workspace")
|
44 |
+
|
45 |
+
|
46 |
+
@contextmanager
|
47 |
+
def random_seed(seed: int):
|
48 |
+
state = random.getstate()
|
49 |
+
random.seed(seed)
|
50 |
+
try:
|
51 |
+
yield
|
52 |
+
finally:
|
53 |
+
# Go back to previous state
|
54 |
+
random.setstate(state)
|
55 |
+
|
56 |
+
|
57 |
+
@op("BioNeMo > Download CELLxGENE dataset", slow=True)
|
58 |
+
def download_cellxgene_dataset(
|
59 |
+
*,
|
60 |
+
save_path: str,
|
61 |
+
census_version: str = "2023-12-15",
|
62 |
+
organism: str = "Homo sapiens",
|
63 |
+
value_filter='dataset_id=="8e47ed12-c658-4252-b126-381df8d52a3d"',
|
64 |
+
max_workers: int = 1,
|
65 |
+
use_mp: bool = False,
|
66 |
+
) -> None:
|
67 |
+
"""Downloads a CELLxGENE dataset"""
|
68 |
+
|
69 |
+
with cellxgene_census.open_soma(census_version=census_version) as census:
|
70 |
+
adata = cellxgene_census.get_anndata(
|
71 |
+
census,
|
72 |
+
organism,
|
73 |
+
obs_value_filter=value_filter,
|
74 |
+
)
|
75 |
+
with random_seed(32):
|
76 |
+
indices = list(range(len(adata)))
|
77 |
+
random.shuffle(indices)
|
78 |
+
micro_batch_size: int = 32
|
79 |
+
num_steps: int = 256
|
80 |
+
selection = sorted(indices[: micro_batch_size * num_steps])
|
81 |
+
# NOTE: there's a current constraint that predict_step needs to be a function of micro-batch-size.
|
82 |
+
# this is something we are working on fixing. A quick hack is to set micro-batch-size=1, but this is
|
83 |
+
# slow. In this notebook we are going to use mbs=32 and subsample the anndata.
|
84 |
+
adata = adata[selection].copy() # so it's not a view
|
85 |
+
h5ad_outfile = DATA_PATH / Path("hs-celltype-bench.h5ad")
|
86 |
+
adata.write_h5ad(h5ad_outfile)
|
87 |
+
with tempfile.TemporaryDirectory() as temp_dir:
|
88 |
+
coll = SingleCellCollection(temp_dir)
|
89 |
+
coll.load_h5ad_multi(h5ad_outfile.parent, max_workers=max_workers, use_processes=use_mp)
|
90 |
+
coll.flatten(DATA_PATH / save_path, destroy_on_copy=True)
|
91 |
+
return DATA_PATH / save_path
|
92 |
+
|
93 |
+
|
94 |
+
@op("BioNeMo > Import H5AD file")
|
95 |
+
def import_h5ad(*, file_path: str):
|
96 |
+
return scanpy.read_h5ad(DATA_PATH / Path(file_path))
|
97 |
+
|
98 |
+
|
99 |
+
@op("BioNeMo > Download model", slow=True)
|
100 |
+
def download_model(*, model_name: str) -> str:
|
101 |
+
"""Downloads a model."""
|
102 |
+
model_download_parameters = {
|
103 |
+
"geneformer_100m": {
|
104 |
+
"name": "geneformer_100m",
|
105 |
+
"version": "2.0",
|
106 |
+
"path": "geneformer_106M_240530_nemo2",
|
107 |
+
},
|
108 |
+
"geneformer_10m": {
|
109 |
+
"name": "geneformer_10m",
|
110 |
+
"version": "2.0",
|
111 |
+
"path": "geneformer_10M_240530_nemo2",
|
112 |
+
},
|
113 |
+
"geneformer_10m2": {
|
114 |
+
"name": "geneformer_10m",
|
115 |
+
"version": "2.1",
|
116 |
+
"path": "geneformer_10M_241113_nemo2",
|
117 |
+
},
|
118 |
+
}
|
119 |
+
|
120 |
+
# Define the URL and output file
|
121 |
+
url_template = "https://api.ngc.nvidia.com/v2/models/org/nvidia/team/clara/{name}/{version}/files?redirect=true&path={path}.tar.gz"
|
122 |
+
url = url_template.format(**model_download_parameters[model_name])
|
123 |
+
model_filename = f"{DATA_PATH}/{model_download_parameters[model_name]['path']}"
|
124 |
+
output_file = f"{model_filename}.tar.gz"
|
125 |
+
|
126 |
+
# Send the request
|
127 |
+
response = requests.get(url, allow_redirects=True, stream=True)
|
128 |
+
response.raise_for_status() # Raise an error for bad responses (4xx and 5xx)
|
129 |
+
|
130 |
+
# Save the file to disk
|
131 |
+
with open(f"{output_file}", "wb") as file:
|
132 |
+
for chunk in response.iter_content(chunk_size=8192):
|
133 |
+
file.write(chunk)
|
134 |
+
|
135 |
+
# Extract the tar.gz file
|
136 |
+
os.makedirs(model_filename, exist_ok=True)
|
137 |
+
with tarfile.open(output_file, "r:gz") as tar:
|
138 |
+
tar.extractall(path=model_filename)
|
139 |
+
|
140 |
+
return model_filename
|
141 |
+
|
142 |
+
|
143 |
+
@op("BioNeMo > Infer", slow=True)
|
144 |
+
def infer(dataset_path: str, model_path: str | None = None, *, results_path: str) -> str:
|
145 |
+
"""Infer on a dataset."""
|
146 |
+
# This import is slow, so we only import it when we need it.
|
147 |
+
from bionemo.geneformer.scripts.infer_geneformer import infer_model
|
148 |
+
|
149 |
+
infer_model(
|
150 |
+
data_path=dataset_path,
|
151 |
+
checkpoint_path=model_path,
|
152 |
+
results_path=DATA_PATH / results_path,
|
153 |
+
include_hiddens=False,
|
154 |
+
micro_batch_size=32,
|
155 |
+
include_embeddings=True,
|
156 |
+
include_logits=False,
|
157 |
+
seq_length=2048,
|
158 |
+
precision="bf16-mixed",
|
159 |
+
devices=1,
|
160 |
+
num_nodes=1,
|
161 |
+
num_dataset_workers=10,
|
162 |
+
)
|
163 |
+
return DATA_PATH / results_path
|
164 |
+
|
165 |
+
|
166 |
+
@op("BioNeMo > Load results")
|
167 |
+
def load_results(results_path: str):
|
168 |
+
embeddings = (
|
169 |
+
torch.load(f"{results_path}/predictions__rank_0.pt")["embeddings"].float().cpu().numpy()
|
170 |
+
)
|
171 |
+
return embeddings
|
172 |
+
|
173 |
+
|
174 |
+
@op("BioNeMo > Get labels")
|
175 |
+
def get_labels(adata):
|
176 |
+
infer_metadata = adata.obs
|
177 |
+
labels = infer_metadata["cell_type"].values
|
178 |
+
label_encoder = LabelEncoder()
|
179 |
+
integer_labels = label_encoder.fit_transform(labels)
|
180 |
+
label_encoder.integer_labels = integer_labels
|
181 |
+
return label_encoder
|
182 |
+
|
183 |
+
|
184 |
+
@op("BioNeMo > Plot labels", view="visualization")
|
185 |
+
def plot_labels(adata):
|
186 |
+
infer_metadata = adata.obs
|
187 |
+
labels = infer_metadata["cell_type"].values
|
188 |
+
label_counts = Counter(labels)
|
189 |
+
labels = list(label_counts.keys())
|
190 |
+
values = list(label_counts.values())
|
191 |
+
|
192 |
+
options = {
|
193 |
+
"title": {
|
194 |
+
"text": "Cell type counts for classification dataset",
|
195 |
+
"left": "center",
|
196 |
+
},
|
197 |
+
"tooltip": {"trigger": "axis", "axisPointer": {"type": "shadow"}},
|
198 |
+
"xAxis": {
|
199 |
+
"type": "category",
|
200 |
+
"data": labels,
|
201 |
+
"axisLabel": {"rotate": 45, "align": "right"},
|
202 |
+
},
|
203 |
+
"yAxis": {"type": "value"},
|
204 |
+
"series": [
|
205 |
+
{
|
206 |
+
"name": "Count",
|
207 |
+
"type": "bar",
|
208 |
+
"data": values,
|
209 |
+
"itemStyle": {"color": "#4285F4"},
|
210 |
+
}
|
211 |
+
],
|
212 |
+
}
|
213 |
+
return options
|
214 |
+
|
215 |
+
|
216 |
+
@op("BioNeMo > Run benchmark", slow=True)
|
217 |
+
def run_benchmark(data, labels, *, use_pca: bool = False):
|
218 |
+
"""
|
219 |
+
data - contains the single cell expression (or whatever feature) in each row.
|
220 |
+
labels - contains the string label for each cell
|
221 |
+
|
222 |
+
data_shape (R, C)
|
223 |
+
labels_shape (R,)
|
224 |
+
"""
|
225 |
+
np.random.seed(1337)
|
226 |
+
# Define the target dimension 'n_components'
|
227 |
+
n_components = 10 # for example, adjust based on your specific needs
|
228 |
+
|
229 |
+
# Create a pipeline that includes Gaussian random projection and RandomForestClassifier
|
230 |
+
if use_pca:
|
231 |
+
pipeline = Pipeline(
|
232 |
+
[
|
233 |
+
("projection", PCA(n_components=n_components)),
|
234 |
+
("classifier", RandomForestClassifier(class_weight="balanced")),
|
235 |
+
]
|
236 |
+
)
|
237 |
+
else:
|
238 |
+
pipeline = Pipeline([("classifier", RandomForestClassifier(class_weight="balanced"))])
|
239 |
+
|
240 |
+
# Set up StratifiedKFold to ensure each fold reflects the overall distribution of labels
|
241 |
+
cv = StratifiedKFold(n_splits=5)
|
242 |
+
|
243 |
+
# Define the scoring functions
|
244 |
+
scoring = {
|
245 |
+
"accuracy": make_scorer(accuracy_score),
|
246 |
+
"precision": make_scorer(precision_score, average="macro"), # 'macro' averages over classes
|
247 |
+
"recall": make_scorer(recall_score, average="macro"),
|
248 |
+
"f1_score": make_scorer(f1_score, average="macro"),
|
249 |
+
# 'roc_auc' requires probability or decision function; hence use multi_class if applicable
|
250 |
+
"roc_auc": make_scorer(roc_auc_score, multi_class="ovr"),
|
251 |
+
}
|
252 |
+
labels = labels.integer_labels
|
253 |
+
# Perform stratified cross-validation with multiple metrics using the pipeline
|
254 |
+
results = cross_validate(
|
255 |
+
pipeline, data, labels, cv=cv, scoring=scoring, return_train_score=False
|
256 |
+
)
|
257 |
+
|
258 |
+
# Print the cross-validation results
|
259 |
+
print("Cross-validation metrics:")
|
260 |
+
results_out = {}
|
261 |
+
for metric, scores in results.items():
|
262 |
+
if metric.startswith("test_"):
|
263 |
+
results_out[metric] = (scores.mean(), scores.std())
|
264 |
+
print(f"{metric[5:]}: {scores.mean():.3f} (+/- {scores.std():.3f})")
|
265 |
+
|
266 |
+
predictions = cross_val_predict(pipeline, data, labels, cv=cv)
|
267 |
+
|
268 |
+
# v Return confusion matrix and metrics.
|
269 |
+
conf_matrix = confusion_matrix(labels, predictions)
|
270 |
+
|
271 |
+
return results_out, conf_matrix
|
272 |
+
|
273 |
+
|
274 |
+
@op("BioNeMo > Plot confusion matrix", view="visualization", slow=True)
|
275 |
+
def plot_confusion_matrix(benchmark_output, labels):
|
276 |
+
cm = benchmark_output[1]
|
277 |
+
labels = labels.classes_
|
278 |
+
str_labels = [str(label) for label in labels]
|
279 |
+
norm_cm = [[float(val / sum(row)) if sum(row) else 0 for val in row] for row in cm]
|
280 |
+
# heatmap has the 0,0 at the bottom left corner
|
281 |
+
num_rows = len(str_labels)
|
282 |
+
heatmap_data = [
|
283 |
+
[j, num_rows - i - 1, norm_cm[i][j]] for i in range(len(labels)) for j in range(len(labels))
|
284 |
+
]
|
285 |
+
|
286 |
+
options = {
|
287 |
+
"title": {"text": "Confusion Matrix", "left": "center"},
|
288 |
+
"tooltip": {"position": "top"},
|
289 |
+
"xAxis": {
|
290 |
+
"type": "category",
|
291 |
+
"data": str_labels,
|
292 |
+
"splitArea": {"show": True},
|
293 |
+
"axisLabel": {"rotate": 70, "align": "right"},
|
294 |
+
},
|
295 |
+
"yAxis": {
|
296 |
+
"type": "category",
|
297 |
+
"data": list(reversed(str_labels)),
|
298 |
+
"splitArea": {"show": True},
|
299 |
+
},
|
300 |
+
"grid": {
|
301 |
+
"height": "70%",
|
302 |
+
"width": "70%",
|
303 |
+
"left": "20%",
|
304 |
+
"right": "10%",
|
305 |
+
"bottom": "10%",
|
306 |
+
"top": "10%",
|
307 |
+
},
|
308 |
+
"visualMap": {
|
309 |
+
"min": 0,
|
310 |
+
"max": 1,
|
311 |
+
"calculable": True,
|
312 |
+
"orient": "vertical",
|
313 |
+
"right": 10,
|
314 |
+
"top": "center",
|
315 |
+
"inRange": {"color": ["#E0F7FA", "#81D4FA", "#29B6F6", "#0288D1", "#01579B"]},
|
316 |
+
},
|
317 |
+
"series": [
|
318 |
+
{
|
319 |
+
"name": "Confusion matrix",
|
320 |
+
"type": "heatmap",
|
321 |
+
"data": heatmap_data,
|
322 |
+
"emphasis": {"itemStyle": {"borderColor": "#333", "borderWidth": 1}},
|
323 |
+
"itemStyle": {"borderColor": "#D3D3D3", "borderWidth": 2},
|
324 |
+
}
|
325 |
+
],
|
326 |
+
}
|
327 |
+
return options
|
328 |
+
|
329 |
+
|
330 |
+
@op("BioNeMo > Plot accuracy comparison", view="visualization")
|
331 |
+
def accuracy_comparison(benchmark_output10m, benchmark_output100m):
|
332 |
+
results_10m = benchmark_output10m[0]
|
333 |
+
results_106M = benchmark_output100m[0]
|
334 |
+
data = {
|
335 |
+
"model": ["10M parameters", "106M parameters"],
|
336 |
+
"accuracy_mean": [
|
337 |
+
results_10m["test_accuracy"][0],
|
338 |
+
results_106M["test_accuracy"][0],
|
339 |
+
],
|
340 |
+
"accuracy_std": [
|
341 |
+
results_10m["test_accuracy"][1],
|
342 |
+
results_106M["test_accuracy"][1],
|
343 |
+
],
|
344 |
+
}
|
345 |
+
|
346 |
+
labels = data["model"] # X-axis labels
|
347 |
+
values = data["accuracy_mean"] # Y-axis values
|
348 |
+
error_bars = data["accuracy_std"] # Standard deviation for error bars
|
349 |
+
|
350 |
+
options = {
|
351 |
+
"title": {
|
352 |
+
"text": "Accuracy Comparison",
|
353 |
+
"left": "center",
|
354 |
+
"textStyle": {
|
355 |
+
"fontSize": 20, # Bigger font for title
|
356 |
+
"fontWeight": "bold", # Make title bold
|
357 |
+
},
|
358 |
+
},
|
359 |
+
"grid": {
|
360 |
+
"height": "70%",
|
361 |
+
"width": "70%",
|
362 |
+
"left": "20%",
|
363 |
+
"right": "10%",
|
364 |
+
"bottom": "10%",
|
365 |
+
"top": "10%",
|
366 |
+
},
|
367 |
+
"tooltip": {"trigger": "axis", "axisPointer": {"type": "shadow"}},
|
368 |
+
"xAxis": {
|
369 |
+
"type": "category",
|
370 |
+
"data": labels,
|
371 |
+
"axisLabel": {
|
372 |
+
"rotate": 45, # Rotate labels for better readability
|
373 |
+
"align": "right",
|
374 |
+
"textStyle": {
|
375 |
+
"fontSize": 14, # Bigger font for X-axis labels
|
376 |
+
"fontWeight": "bold",
|
377 |
+
},
|
378 |
+
},
|
379 |
+
},
|
380 |
+
"yAxis": {
|
381 |
+
"type": "value",
|
382 |
+
"name": "Accuracy",
|
383 |
+
"min": 0,
|
384 |
+
"max": 1,
|
385 |
+
"interval": 0.1, # Matches np.arange(0, 1.05, 0.05)
|
386 |
+
"axisLabel": {
|
387 |
+
"textStyle": {
|
388 |
+
"fontSize": 14, # Bigger font for X-axis labels
|
389 |
+
"fontWeight": "bold",
|
390 |
+
}
|
391 |
+
},
|
392 |
+
},
|
393 |
+
"series": [
|
394 |
+
{
|
395 |
+
"name": "Accuracy",
|
396 |
+
"type": "bar",
|
397 |
+
"data": values,
|
398 |
+
"itemStyle": {
|
399 |
+
"color": "#440154" # Viridis color palette (dark purple)
|
400 |
+
},
|
401 |
+
},
|
402 |
+
{
|
403 |
+
"name": "Error Bars",
|
404 |
+
"type": "errorbar",
|
405 |
+
"data": [[val - err, val + err] for val, err in zip(values, error_bars)],
|
406 |
+
"itemStyle": {"color": "#1f77b4"},
|
407 |
+
},
|
408 |
+
],
|
409 |
+
}
|
410 |
+
return options
|
411 |
+
|
412 |
+
|
413 |
+
@op("BioNeMo > Plot f1 comparison", view="visualization")
|
414 |
+
def f1_comparison(benchmark_output10m, benchmark_output100m):
|
415 |
+
results_10m = benchmark_output10m[0]
|
416 |
+
results_106M = benchmark_output100m[0]
|
417 |
+
data = {
|
418 |
+
"model": ["10M parameters", "106M parameters"],
|
419 |
+
"f1_score_mean": [
|
420 |
+
results_10m["test_f1_score"][0],
|
421 |
+
results_106M["test_f1_score"][0],
|
422 |
+
],
|
423 |
+
"f1_score_std": [
|
424 |
+
results_10m["test_f1_score"][1],
|
425 |
+
results_106M["test_f1_score"][1],
|
426 |
+
],
|
427 |
+
}
|
428 |
+
|
429 |
+
labels = data["model"] # X-axis labels
|
430 |
+
values = data["f1_score_mean"] # Y-axis values
|
431 |
+
error_bars = data["f1_score_std"] # Standard deviation for error bars
|
432 |
+
|
433 |
+
options = {
|
434 |
+
"title": {
|
435 |
+
"text": "F1 Score Comparison",
|
436 |
+
"left": "center",
|
437 |
+
"textStyle": {
|
438 |
+
"fontSize": 20, # Bigger font for title
|
439 |
+
"fontWeight": "bold", # Make title bold
|
440 |
+
},
|
441 |
+
},
|
442 |
+
"grid": {
|
443 |
+
"height": "70%",
|
444 |
+
"width": "70%",
|
445 |
+
"left": "20%",
|
446 |
+
"right": "10%",
|
447 |
+
"bottom": "10%",
|
448 |
+
"top": "10%",
|
449 |
+
},
|
450 |
+
"tooltip": {"trigger": "axis", "axisPointer": {"type": "shadow"}},
|
451 |
+
"xAxis": {
|
452 |
+
"type": "category",
|
453 |
+
"data": labels,
|
454 |
+
"axisLabel": {
|
455 |
+
"rotate": 45, # Rotate labels for better readability
|
456 |
+
"align": "right",
|
457 |
+
"textStyle": {
|
458 |
+
"fontSize": 14, # Bigger font for X-axis labels
|
459 |
+
"fontWeight": "bold",
|
460 |
+
},
|
461 |
+
},
|
462 |
+
},
|
463 |
+
"yAxis": {
|
464 |
+
"type": "value",
|
465 |
+
"name": "F1 Score",
|
466 |
+
"min": 0,
|
467 |
+
"max": 1,
|
468 |
+
"interval": 0.1, # Matches np.arange(0, 1.05, 0.05),
|
469 |
+
"axisLabel": {
|
470 |
+
"textStyle": {
|
471 |
+
"fontSize": 14, # Bigger font for X-axis labels
|
472 |
+
"fontWeight": "bold",
|
473 |
+
}
|
474 |
+
},
|
475 |
+
},
|
476 |
+
"series": [
|
477 |
+
{
|
478 |
+
"name": "F1 Score",
|
479 |
+
"type": "bar",
|
480 |
+
"data": values,
|
481 |
+
"itemStyle": {
|
482 |
+
"color": "#440154" # Viridis color palette (dark purple)
|
483 |
+
},
|
484 |
+
},
|
485 |
+
{
|
486 |
+
"name": "Error Bars",
|
487 |
+
"type": "errorbar",
|
488 |
+
"data": [[val - err, val + err] for val, err in zip(values, error_bars)],
|
489 |
+
"itemStyle": {"color": "#1f77b4"},
|
490 |
+
},
|
491 |
+
],
|
492 |
+
}
|
493 |
+
return options
|