open-notebooklm / app.py
m-ric's picture
m-ric HF Staff
Update app.py
d065cac verified
raw
history blame
3.99 kB
import queue
import threading
import os
import gradio as gr
from dia.model import Dia
from huggingface_hub import InferenceClient
import numpy as np
# Hardcoded podcast subject
PODCAST_SUBJECT = "The future of AI and its impact on society"
# Initialize the inference client
client = InferenceClient("Qwen/Qwen2.5-Coder-32B-Instruct", provider="together", token=os.getenv("HF_TOKEN"))
model = Dia.from_pretrained("nari-labs/Dia-1.6B", compute_dtype="float16")
# Queue for audio streaming
audio_queue = queue.Queue()
stop_signal = threading.Event()
def generate_podcast_text(subject):
prompt = f"""Generate a podcast told by 2 hosts about {subject}.
The podcast should be an insightful discussion, with some amount of playful banter.
Separate dialog as follows using [S1] for the male host and [S2] for the female host, for instance:
[S1] Hello, how are you?
[S2] I'm good, thank you. How are you?
[S1] I'm good, thank you. (laughs)
[S2] Great.
Now go on, make 5 minutes of podcast.
"""
response = client.chat_completion([{"role": "user", "content": prompt}], max_tokens=1000)
return response.choices[0].message.content
def split_podcast_into_chunks(podcast_text, chunk_size=3):
lines = podcast_text.strip().split("\n")
chunks = []
for i in range(0, len(lines), chunk_size):
chunk = "\n".join(lines[i : i + chunk_size])
chunks.append(chunk)
return chunks
def process_audio_chunks(podcast_text):
chunks = split_podcast_into_chunks(podcast_text)
sample_rate = 36000 # Modified from https://huggingface.co/spaces/nari-labs/Dia-1.6B/blob/main/app.py has 44100
for chunk in chunks:
if stop_signal.is_set():
break
raw_audio = model.generate(chunk, use_torch_compile=True, verbose=False)
audio_chunk = np.array(raw_audio, dtype=np.float32)
audio_queue.put((sample_rate, audio_chunk))
audio_queue.put(None)
def stream_audio_generator(podcast_text):
"""Creates a generator that yields audio chunks for streaming"""
stop_signal.clear()
# Start audio generation in a separate thread
gen_thread = threading.Thread(target=process_audio_chunks, args=(podcast_text,))
gen_thread.start()
try:
while True:
# Get next chunk from queue
chunk = audio_queue.get()
# None signals end of generation
if chunk is None:
break
# Yield the audio chunk with sample rate
yield chunk
except Exception as e:
print(f"Error in streaming: {e}")
def stop_generation():
stop_signal.set()
return "Generation stopped"
def generate_podcast():
podcast_text = generate_podcast_text(PODCAST_SUBJECT)
return podcast_text
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("# NotebookLM Podcast Generator")
with gr.Row():
with gr.Column(scale=2):
gr.Markdown(f"## Current Topic: {PODCAST_SUBJECT}")
gr.Markdown("This app generates a podcast discussion between two hosts about the specified topic.")
generate_btn = gr.Button("Generate Podcast Script", variant="primary")
podcast_output = gr.Textbox(label="Generated Podcast Script", lines=15)
gr.Markdown("## Audio Preview")
gr.Markdown("Click below to hear the podcast with realistic voices:")
with gr.Row():
start_audio_btn = gr.Button("▶️ Generate Podcast", variant="secondary")
stop_btn = gr.Button("⏹️ Stop", variant="stop")
audio_output = gr.Audio(label="Podcast Audio", streaming=True)
status_text = gr.Textbox(label="Status", visible=True)
generate_btn.click(fn=generate_podcast, outputs=podcast_output)
start_audio_btn.click(fn=stream_audio_generator, inputs=podcast_output, outputs=audio_output)
stop_btn.click(fn=stop_generation, outputs=status_text)
if __name__ == "__main__":
demo.queue().launch()