Spaces:
Running
on
Zero
Running
on
Zero
Improve description
Browse files
README.md
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
---
|
2 |
title: Open NotebookLM
|
3 |
-
emoji:
|
4 |
colorFrom: yellow
|
5 |
colorTo: red
|
6 |
sdk: gradio
|
@@ -9,7 +9,7 @@ app_file: app.py
|
|
9 |
pinned: true
|
10 |
header: mini
|
11 |
license: apache-2.0
|
12 |
-
short_description:
|
13 |
---
|
14 |
|
15 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
1 |
---
|
2 |
title: Open NotebookLM
|
3 |
+
emoji: 🎙️
|
4 |
colorFrom: yellow
|
5 |
colorTo: red
|
6 |
sdk: gradio
|
|
|
9 |
pinned: true
|
10 |
header: mini
|
11 |
license: apache-2.0
|
12 |
+
short_description: Have your document discussed by 2 hsots in a captivating podcast.
|
13 |
---
|
14 |
|
15 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
CHANGED
@@ -61,10 +61,10 @@ def generate_podcast_script(subject: str, steering_question: str | None = None)
|
|
61 |
CUDA_AVAILABLE = torch.cuda.is_available()
|
62 |
|
63 |
kmodel = KModel(repo_id='hexgrad/Kokoro-82M').to("cuda" if CUDA_AVAILABLE else "cpu").eval()
|
64 |
-
kpipeline = KPipeline(lang_code="
|
65 |
|
66 |
-
MALE_VOICE = "
|
67 |
-
FEMALE_VOICE = "
|
68 |
|
69 |
# Pre‑warm voices to avoid first‑call latency
|
70 |
for v in (MALE_VOICE, FEMALE_VOICE):
|
@@ -119,10 +119,12 @@ def generate_podcast(url: str, pdf_path: str, topic: str):
|
|
119 |
print(f"PROCESSED '{utterance}' in {int(t1-t0)} seconds. {audio_numpy.shape}")
|
120 |
|
121 |
demo = gr.Interface(
|
122 |
-
title="Open NotebookLM",
|
123 |
-
description=f"""Generates a podcast discussion between two hosts about the materials of your choice.
|
124 |
|
125 |
-
If you do not specify any source materials below, the podcast will be about the top trending [Daily paper](https://huggingface.co/papers/), '**{list(top_papers.keys())[0]}**'
|
|
|
|
|
126 |
fn=generate_podcast,
|
127 |
inputs=[
|
128 |
gr.Textbox(
|
|
|
61 |
CUDA_AVAILABLE = torch.cuda.is_available()
|
62 |
|
63 |
kmodel = KModel(repo_id='hexgrad/Kokoro-82M').to("cuda" if CUDA_AVAILABLE else "cpu").eval()
|
64 |
+
kpipeline = KPipeline(lang_code="b") # English voices
|
65 |
|
66 |
+
MALE_VOICE = "bm_daniel"
|
67 |
+
FEMALE_VOICE = "bf_emma"
|
68 |
|
69 |
# Pre‑warm voices to avoid first‑call latency
|
70 |
for v in (MALE_VOICE, FEMALE_VOICE):
|
|
|
119 |
print(f"PROCESSED '{utterance}' in {int(t1-t0)} seconds. {audio_numpy.shape}")
|
120 |
|
121 |
demo = gr.Interface(
|
122 |
+
title="Open NotebookLM 🎙️",
|
123 |
+
description=f"""Generates a podcast discussion between two hosts about the materials of your choice.
|
124 |
|
125 |
+
If you do not specify any source materials below, the podcast will be about the top trending [Daily paper](https://huggingface.co/papers/), '**{list(top_papers.keys())[0]}**'
|
126 |
+
|
127 |
+
Based on [Kokoro TTS](https://huggingface.co/hexgrad/Kokoro-82M), lightning-fast inference for [Llama-3.3-70B](meta-llama/Llama-3.3-70B-Instruct) by Cerebras, and uses elements from a NotebookLM app by [Gabriel Chua](https://huggingface.co/spaces/gabrielchua/open-notebooklm).""",
|
128 |
fn=generate_podcast,
|
129 |
inputs=[
|
130 |
gr.Textbox(
|