Spaces:
Running
on
Zero
Running
on
Zero
Working Kokoro
Browse files
app.py
CHANGED
@@ -2,27 +2,52 @@ import queue
|
|
2 |
import threading
|
3 |
import spaces
|
4 |
import os
|
|
|
|
|
5 |
import gradio as gr
|
6 |
-
from dia.model import Dia
|
7 |
-
from huggingface_hub import InferenceClient
|
8 |
import numpy as np
|
|
|
9 |
from transformers import set_seed
|
10 |
-
|
11 |
-
|
12 |
|
13 |
-
#
|
|
|
|
|
14 |
PODCAST_SUBJECT = "The future of AI and its impact on society"
|
15 |
|
16 |
-
#
|
17 |
-
|
18 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
-
|
21 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
stop_signal = threading.Event()
|
23 |
|
24 |
|
25 |
-
|
|
|
|
|
26 |
prompt = f"""Generate a podcast told by 2 hosts about {subject}.
|
27 |
The podcast should be an insightful discussion, with some amount of playful banter.
|
28 |
Separate dialog as follows using [S1] for the male host and [S2] for the female host, for instance:
|
@@ -32,87 +57,53 @@ Separate dialog as follows using [S1] for the male host and [S2] for the female
|
|
32 |
[S2] Great.
|
33 |
Now go on, make 5 minutes of podcast.
|
34 |
"""
|
35 |
-
response = client.chat_completion(
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
def split_podcast_into_chunks(podcast_text, chunk_size=3):
|
40 |
-
lines = podcast_text.strip().split("\n")
|
41 |
-
return ["\n".join(lines[i : i + chunk_size]) for i in range(0, len(lines), chunk_size)]
|
42 |
-
|
43 |
-
def postprocess_audio(output_audio_np, speed_factor: float=0.8):
|
44 |
-
"""Taken from https://huggingface.co/spaces/nari-labs/Dia-1.6B/blob/main/app.py"""
|
45 |
-
# Get sample rate from the loaded DAC model
|
46 |
-
output_sr = 44100
|
47 |
-
|
48 |
-
# --- Slow down audio ---
|
49 |
-
original_len = len(output_audio_np)
|
50 |
-
# Ensure speed_factor is positive and not excessively small/large to avoid issues
|
51 |
-
speed_factor = max(0.1, min(speed_factor, 5.0))
|
52 |
-
target_len = int(
|
53 |
-
original_len / speed_factor
|
54 |
-
) # Target length based on speed_factor
|
55 |
-
if (
|
56 |
-
target_len != original_len and target_len > 0
|
57 |
-
): # Only interpolate if length changes and is valid
|
58 |
-
x_original = np.arange(original_len)
|
59 |
-
x_resampled = np.linspace(0, original_len - 1, target_len)
|
60 |
-
resampled_audio_np = np.interp(x_resampled, x_original, output_audio_np)
|
61 |
-
output_audio = (
|
62 |
-
output_sr,
|
63 |
-
resampled_audio_np.astype(np.float32),
|
64 |
-
) # Use resampled audio
|
65 |
-
print(
|
66 |
-
f"Resampled audio from {original_len} to {target_len} samples for {speed_factor:.2f}x speed."
|
67 |
-
)
|
68 |
-
else:
|
69 |
-
output_audio = (
|
70 |
-
output_sr,
|
71 |
-
output_audio_np,
|
72 |
-
) # Keep original if calculation fails or no change
|
73 |
-
print(f"Skipping audio speed adjustment (factor: {speed_factor:.2f}).")
|
74 |
-
# --- End slowdown ---
|
75 |
-
|
76 |
-
print(
|
77 |
-
f"Audio conversion successful. Final shape: {output_audio[1].shape}, Sample Rate: {output_sr}"
|
78 |
)
|
|
|
79 |
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
):
|
85 |
-
audio_for_gradio = np.clip(output_audio[1], -1.0, 1.0)
|
86 |
-
audio_for_gradio = (audio_for_gradio * 32767).astype(np.int16)
|
87 |
-
output_audio = (output_sr, audio_for_gradio)
|
88 |
-
print("Converted audio to int16 for Gradio output.")
|
89 |
-
return output_audio
|
90 |
|
|
|
|
|
|
|
91 |
|
92 |
-
|
93 |
-
def process_audio_chunks(podcast_text):
|
94 |
-
chunks = split_podcast_into_chunks(podcast_text)
|
95 |
-
sample_rate = 44100 # Modified from https://huggingface.co/spaces/nari-labs/Dia-1.6B/blob/main/app.py has 44100
|
96 |
-
for chunk in chunks:
|
97 |
-
print(f"Processing chunk: {chunk}")
|
98 |
if stop_signal.is_set():
|
99 |
break
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
116 |
stop_signal.clear()
|
117 |
threading.Thread(target=process_audio_chunks, args=(podcast_text,)).start()
|
118 |
|
@@ -120,15 +111,14 @@ def stream_audio_generator(podcast_text):
|
|
120 |
chunk = audio_queue.get()
|
121 |
if chunk is None:
|
122 |
break
|
123 |
-
|
|
|
124 |
|
125 |
-
# Encode the numpy array into a WAV blob
|
126 |
buf = io.BytesIO()
|
127 |
-
sf.write(buf, data
|
128 |
buf.seek(0)
|
129 |
-
|
130 |
-
|
131 |
-
yield buffer# <-- bytes, so the browser can play it
|
132 |
|
133 |
|
134 |
def stop_generation():
|
@@ -137,8 +127,7 @@ def stop_generation():
|
|
137 |
|
138 |
|
139 |
def generate_podcast():
|
140 |
-
|
141 |
-
return podcast_text
|
142 |
|
143 |
|
144 |
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
@@ -147,7 +136,9 @@ with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
|
147 |
with gr.Row():
|
148 |
with gr.Column(scale=2):
|
149 |
gr.Markdown(f"## Current Topic: {PODCAST_SUBJECT}")
|
150 |
-
gr.Markdown(
|
|
|
|
|
151 |
|
152 |
generate_btn = gr.Button("Generate Podcast Script", variant="primary")
|
153 |
podcast_output = gr.Textbox(label="Generated Podcast Script", lines=15)
|
|
|
2 |
import threading
|
3 |
import spaces
|
4 |
import os
|
5 |
+
import io
|
6 |
+
import soundfile as sf
|
7 |
import gradio as gr
|
|
|
|
|
8 |
import numpy as np
|
9 |
+
import torch
|
10 |
from transformers import set_seed
|
11 |
+
from huggingface_hub import InferenceClient
|
12 |
+
from kokoro import KModel, KPipeline
|
13 |
|
14 |
+
# -----------------------------------------------------------------------------
|
15 |
+
# Hard‑coded podcast subject
|
16 |
+
# -----------------------------------------------------------------------------
|
17 |
PODCAST_SUBJECT = "The future of AI and its impact on society"
|
18 |
|
19 |
+
# -----------------------------------------------------------------------------
|
20 |
+
# LLM that writes the script (unchanged)
|
21 |
+
# -----------------------------------------------------------------------------
|
22 |
+
client = InferenceClient(
|
23 |
+
"meta-llama/Llama-3.3-70B-Instruct",
|
24 |
+
provider="cerebras",
|
25 |
+
token=os.getenv("HF_TOKEN"),
|
26 |
+
)
|
27 |
+
|
28 |
+
# -----------------------------------------------------------------------------
|
29 |
+
# Kokoro TTS setup (replaces Dia)
|
30 |
+
# -----------------------------------------------------------------------------
|
31 |
+
CUDA_AVAILABLE = torch.cuda.is_available()
|
32 |
+
|
33 |
+
kmodel = KModel().to("cuda" if CUDA_AVAILABLE else "cpu").eval()
|
34 |
+
kpipeline = KPipeline(lang_code="a") # English voices
|
35 |
|
36 |
+
MALE_VOICE = "am_michael" # [S1]
|
37 |
+
FEMALE_VOICE = "af_heart" # [S2]
|
38 |
+
|
39 |
+
# Pre‑warm voices to avoid first‑call latency
|
40 |
+
for v in (MALE_VOICE, FEMALE_VOICE):
|
41 |
+
kpipeline.load_voice(v)
|
42 |
+
|
43 |
+
|
44 |
+
audio_queue: queue.Queue[tuple[int, np.ndarray] | None] = queue.Queue()
|
45 |
stop_signal = threading.Event()
|
46 |
|
47 |
|
48 |
+
|
49 |
+
def generate_podcast_text(subject: str) -> str:
|
50 |
+
"""Ask the LLM for a ~5‑minute two‑host script."""
|
51 |
prompt = f"""Generate a podcast told by 2 hosts about {subject}.
|
52 |
The podcast should be an insightful discussion, with some amount of playful banter.
|
53 |
Separate dialog as follows using [S1] for the male host and [S2] for the female host, for instance:
|
|
|
57 |
[S2] Great.
|
58 |
Now go on, make 5 minutes of podcast.
|
59 |
"""
|
60 |
+
response = client.chat_completion(
|
61 |
+
[{"role": "user", "content": prompt}],
|
62 |
+
max_tokens=1000,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
)
|
64 |
+
return response.choices[0].message.content
|
65 |
|
66 |
+
@spaces.GPU
|
67 |
+
def process_audio_chunks(podcast_text: str, speed: float = 1.0) -> None:
|
68 |
+
"""Read each line, pick voice via tag, send chunks to the queue."""
|
69 |
+
lines = [l for l in podcast_text.strip().splitlines() if l.strip()]
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
|
71 |
+
pipeline = kpipeline
|
72 |
+
pipeline_voice_female = pipeline.load_voice(FEMALE_VOICE)
|
73 |
+
pipeline_voice_male = pipeline.load_voice(MALE_VOICE)
|
74 |
|
75 |
+
for line in lines:
|
|
|
|
|
|
|
|
|
|
|
76 |
if stop_signal.is_set():
|
77 |
break
|
78 |
+
|
79 |
+
# Expect "[S1] ..." or "[S2] ..."
|
80 |
+
if line.startswith("[S1]"):
|
81 |
+
pipeline_voice = pipeline_voice_male
|
82 |
+
voice = MALE_VOICE
|
83 |
+
utterance = line[len("[S1]"):].strip()
|
84 |
+
elif line.startswith("[S2]"):
|
85 |
+
pipeline_voice = pipeline_voice_female
|
86 |
+
voice = FEMALE_VOICE
|
87 |
+
utterance = line[len("[S2]"):].strip()
|
88 |
+
else: # fallback
|
89 |
+
pipeline_voice = pipeline_voice_female
|
90 |
+
voice = FEMALE_VOICE
|
91 |
+
utterance = line
|
92 |
+
|
93 |
+
first = True
|
94 |
+
for _, ps, _ in pipeline(utterance, voice, speed):
|
95 |
+
ref_s = pipeline_voice[len(ps) - 1]
|
96 |
+
audio = kmodel(ps, ref_s, speed)
|
97 |
+
audio_queue.put((24000, audio.numpy()))
|
98 |
+
audio_numpy = audio.numpy()
|
99 |
+
print("GENERATED AUDIO", audio_numpy[-100:], audio_numpy.max())
|
100 |
+
if first:
|
101 |
+
first = False
|
102 |
+
audio_queue.put((24000, torch.zeros(1).numpy()))
|
103 |
+
audio_queue.put(None) # Signal end of stream
|
104 |
+
|
105 |
+
|
106 |
+
def stream_audio_generator(podcast_text: str):
|
107 |
stop_signal.clear()
|
108 |
threading.Thread(target=process_audio_chunks, args=(podcast_text,)).start()
|
109 |
|
|
|
111 |
chunk = audio_queue.get()
|
112 |
if chunk is None:
|
113 |
break
|
114 |
+
print("CHUNK", chunk, type(chunk))
|
115 |
+
sr, data = chunk
|
116 |
|
|
|
117 |
buf = io.BytesIO()
|
118 |
+
sf.write(buf, data, sr, format="wav")
|
119 |
buf.seek(0)
|
120 |
+
yield buf.getvalue()
|
121 |
+
|
|
|
122 |
|
123 |
|
124 |
def stop_generation():
|
|
|
127 |
|
128 |
|
129 |
def generate_podcast():
|
130 |
+
return generate_podcast_text(PODCAST_SUBJECT)
|
|
|
131 |
|
132 |
|
133 |
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
|
|
136 |
with gr.Row():
|
137 |
with gr.Column(scale=2):
|
138 |
gr.Markdown(f"## Current Topic: {PODCAST_SUBJECT}")
|
139 |
+
gr.Markdown(
|
140 |
+
"This app generates a podcast discussion between two hosts about the specified topic."
|
141 |
+
)
|
142 |
|
143 |
generate_btn = gr.Button("Generate Podcast Script", variant="primary")
|
144 |
podcast_output = gr.Textbox(label="Generated Podcast Script", lines=15)
|