Spaces:
Running
on
Zero
Running
on
Zero
Working interface kokoro
Browse files
app.py
CHANGED
@@ -6,11 +6,11 @@ import io
|
|
6 |
import soundfile as sf
|
7 |
import gradio as gr
|
8 |
import numpy as np
|
|
|
|
|
9 |
import torch
|
10 |
-
from transformers import set_seed
|
11 |
from huggingface_hub import InferenceClient
|
12 |
from kokoro import KModel, KPipeline
|
13 |
-
|
14 |
# -----------------------------------------------------------------------------
|
15 |
# Get podcast subject
|
16 |
# -----------------------------------------------------------------------------
|
@@ -33,17 +33,25 @@ client = InferenceClient(
|
|
33 |
)
|
34 |
|
35 |
|
36 |
-
def generate_podcast_text(subject: str) -> str:
|
37 |
"""Ask the LLM for a script of a podcast given by two hosts."""
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
{"role": "user", "content": f"""Here is the topic: it's the top trending paper on Hugging Face daily papers today. You will need to analyze it by bringing profound insights.
|
42 |
{subject[:1000]}"""},
|
43 |
-
|
|
|
|
|
|
|
|
|
|
|
44 |
max_tokens=8156,
|
45 |
)
|
46 |
-
|
|
|
|
|
|
|
|
|
47 |
|
48 |
# -----------------------------------------------------------------------------
|
49 |
# Kokoro TTS
|
@@ -64,22 +72,19 @@ for v in (MALE_VOICE, FEMALE_VOICE):
|
|
64 |
# Audio generation system with queue
|
65 |
# -----------------------------------------------------------------------------
|
66 |
|
67 |
-
audio_queue: queue.Queue[tuple[int, np.ndarray] | None] = queue.Queue()
|
68 |
-
stop_signal = threading.Event()
|
69 |
-
|
70 |
@spaces.GPU
|
71 |
-
def
|
72 |
-
|
73 |
lines = [l for l in podcast_text.strip().splitlines() if l.strip()]
|
74 |
|
75 |
pipeline = kpipeline
|
76 |
pipeline_voice_female = pipeline.load_voice(FEMALE_VOICE)
|
77 |
pipeline_voice_male = pipeline.load_voice(MALE_VOICE)
|
78 |
|
79 |
-
|
80 |
-
|
81 |
-
break
|
82 |
|
|
|
83 |
# Expect "[S1] ..." or "[S2] ..."
|
84 |
if line.startswith("[MIKE]"):
|
85 |
pipeline_voice = pipeline_voice_male
|
@@ -94,70 +99,49 @@ def process_audio_chunks(podcast_text: str, speed: float = 1.0) -> None:
|
|
94 |
voice = FEMALE_VOICE
|
95 |
utterance = line
|
96 |
|
97 |
-
first = True
|
98 |
for _, ps, _ in pipeline(utterance, voice, speed):
|
|
|
99 |
ref_s = pipeline_voice[len(ps) - 1]
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
gr.
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
gr.Markdown(
|
141 |
-
"This app generates a podcast discussion between two hosts about the specified topic."
|
142 |
-
)
|
143 |
-
|
144 |
-
generate_btn = gr.Button("Generate Podcast Script", variant="primary")
|
145 |
-
podcast_output = gr.Textbox(label="Generated Podcast Script", lines=15)
|
146 |
-
|
147 |
-
gr.Markdown("## Audio Preview")
|
148 |
-
gr.Markdown("Click below to hear the podcast with realistic voices:")
|
149 |
-
|
150 |
-
with gr.Row():
|
151 |
-
start_audio_btn = gr.Button("▶️ Generate Podcast", variant="secondary")
|
152 |
-
stop_btn = gr.Button("⏹️ Stop", variant="stop")
|
153 |
-
|
154 |
-
audio_output = gr.Audio(label="Podcast Audio", streaming=True)
|
155 |
-
status_text = gr.Textbox(label="Status", visible=True)
|
156 |
-
|
157 |
-
generate_btn.click(fn=generate_podcast, outputs=podcast_output)
|
158 |
-
|
159 |
-
start_audio_btn.click(fn=stream_audio_generator, inputs=podcast_output, outputs=[audio_output, status_text])
|
160 |
-
stop_btn.click(fn=stop_generation, outputs=status_text)
|
161 |
|
162 |
if __name__ == "__main__":
|
163 |
-
demo.
|
|
|
6 |
import soundfile as sf
|
7 |
import gradio as gr
|
8 |
import numpy as np
|
9 |
+
import time
|
10 |
+
|
11 |
import torch
|
|
|
12 |
from huggingface_hub import InferenceClient
|
13 |
from kokoro import KModel, KPipeline
|
|
|
14 |
# -----------------------------------------------------------------------------
|
15 |
# Get podcast subject
|
16 |
# -----------------------------------------------------------------------------
|
|
|
33 |
)
|
34 |
|
35 |
|
36 |
+
def generate_podcast_text(subject: str, steering_question: str | None = None) -> str:
|
37 |
"""Ask the LLM for a script of a podcast given by two hosts."""
|
38 |
+
messages = [
|
39 |
+
{"role": "system", "content": SYSTEM_PROMPT},
|
40 |
+
{"role": "user", "content": f"""Here is the topic: it's the top trending paper on Hugging Face daily papers today. You will need to analyze it by bringing profound insights.
|
|
|
41 |
{subject[:1000]}"""},
|
42 |
+
]
|
43 |
+
if steering_question and len(steering_question) > 0:
|
44 |
+
messages.append({"role": "user", "content": f"You could focus on this question: {steering_question}"})
|
45 |
+
|
46 |
+
response = client.chat_completion(
|
47 |
+
messages,
|
48 |
max_tokens=8156,
|
49 |
)
|
50 |
+
full_text = response.choices[0].message.content
|
51 |
+
assert "[JANE]" in full_text
|
52 |
+
dialogue_start_index = full_text.find("[JANE]")
|
53 |
+
podcast_text = full_text[dialogue_start_index:]
|
54 |
+
return podcast_text
|
55 |
|
56 |
# -----------------------------------------------------------------------------
|
57 |
# Kokoro TTS
|
|
|
72 |
# Audio generation system with queue
|
73 |
# -----------------------------------------------------------------------------
|
74 |
|
|
|
|
|
|
|
75 |
@spaces.GPU
|
76 |
+
def generate_podcast(pdf, url, topic):
|
77 |
+
podcast_text = generate_podcast_text(PODCAST_SUBJECT, topic)
|
78 |
lines = [l for l in podcast_text.strip().splitlines() if l.strip()]
|
79 |
|
80 |
pipeline = kpipeline
|
81 |
pipeline_voice_female = pipeline.load_voice(FEMALE_VOICE)
|
82 |
pipeline_voice_male = pipeline.load_voice(MALE_VOICE)
|
83 |
|
84 |
+
speed = 1.
|
85 |
+
sr = 24000
|
|
|
86 |
|
87 |
+
for line in lines:
|
88 |
# Expect "[S1] ..." or "[S2] ..."
|
89 |
if line.startswith("[MIKE]"):
|
90 |
pipeline_voice = pipeline_voice_male
|
|
|
99 |
voice = FEMALE_VOICE
|
100 |
utterance = line
|
101 |
|
|
|
102 |
for _, ps, _ in pipeline(utterance, voice, speed):
|
103 |
+
t0 = time.time()
|
104 |
ref_s = pipeline_voice[len(ps) - 1]
|
105 |
+
audio_numpy = kmodel(ps, ref_s, speed).numpy()
|
106 |
+
yield (sr, audio_numpy)
|
107 |
+
t1 = time.time()
|
108 |
+
print(f"PROCESSED '{utterance}' in {int(t1-t0)} seconds. {audio_numpy.shape}")
|
109 |
+
|
110 |
+
demo = gr.Interface(
|
111 |
+
title="Open NotebookLM",
|
112 |
+
description=f"""Generates a podcast discussion between two hosts about the materials of your choice. Based on [Kokoro](https://huggingface.co/hexgrad/Kokoro-82M), and uses elements from a NotebookLM app by [Gabriel Chua](https://huggingface.co/spaces/gabrielchua/open-notebooklm).
|
113 |
+
|
114 |
+
If you do not specify any source materials below, the podcast will be about the top trending [Daily paper](https://huggingface.co/papers/), '**{list(top_papers.keys())[0]}**'""",
|
115 |
+
fn=generate_podcast,
|
116 |
+
inputs=[
|
117 |
+
gr.File(
|
118 |
+
label="Optional - Upload a pdf",
|
119 |
+
file_types=[".pdf"],
|
120 |
+
file_count="single",
|
121 |
+
),
|
122 |
+
gr.Textbox(
|
123 |
+
label="Optional - Type a URL to read its page",
|
124 |
+
),
|
125 |
+
gr.Textbox(label="Do you have a more specific topic or question on the materials?"),
|
126 |
+
# gr.Dropdown(
|
127 |
+
# label=UI_INPUTS["length"]["label"],
|
128 |
+
# choices=UI_INPUTS["length"]["choices"],
|
129 |
+
# value=UI_INPUTS["length"]["value"],
|
130 |
+
# ),
|
131 |
+
],
|
132 |
+
outputs=[
|
133 |
+
gr.Audio(
|
134 |
+
label="Listen to your podcast",
|
135 |
+
format="wav",
|
136 |
+
streaming=True,
|
137 |
+
),
|
138 |
+
# gr.Markdown(label=UI_OUTPUTS["transcript"]["label"]),
|
139 |
+
],
|
140 |
+
theme=gr.themes.Soft(),
|
141 |
+
submit_btn="Generate podcast 🎙️",
|
142 |
+
# examples=UI_EXAMPLES,
|
143 |
+
# cache_examples=UI_CACHE_EXAMPLES,
|
144 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
145 |
|
146 |
if __name__ == "__main__":
|
147 |
+
demo.launch()
|