Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,5 +1,6 @@
|
|
1 |
import queue
|
2 |
import threading
|
|
|
3 |
import os
|
4 |
import gradio as gr
|
5 |
from dia.model import Dia
|
@@ -12,7 +13,7 @@ PODCAST_SUBJECT = "The future of AI and its impact on society"
|
|
12 |
|
13 |
# Initialize the inference client
|
14 |
client = InferenceClient("meta-llama/Llama-3.3-70B-Instruct", provider="cerebras", token=os.getenv("HF_TOKEN"))
|
15 |
-
model = Dia.from_pretrained("nari-labs/Dia-1.6B", compute_dtype="
|
16 |
|
17 |
# Queue for audio streaming
|
18 |
audio_queue = queue.Queue()
|
@@ -43,7 +44,56 @@ def split_podcast_into_chunks(podcast_text, chunk_size=3):
|
|
43 |
|
44 |
return chunks
|
45 |
|
46 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
def process_audio_chunks(podcast_text):
|
48 |
chunks = split_podcast_into_chunks(podcast_text)
|
49 |
sample_rate = 44100 # Modified from https://huggingface.co/spaces/nari-labs/Dia-1.6B/blob/main/app.py has 44100
|
@@ -51,9 +101,15 @@ def process_audio_chunks(podcast_text):
|
|
51 |
if stop_signal.is_set():
|
52 |
break
|
53 |
set_seed(42)
|
54 |
-
raw_audio = model.generate(
|
55 |
-
|
56 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
|
58 |
audio_queue.put(None)
|
59 |
|
|
|
1 |
import queue
|
2 |
import threading
|
3 |
+
import spaces
|
4 |
import os
|
5 |
import gradio as gr
|
6 |
from dia.model import Dia
|
|
|
13 |
|
14 |
# Initialize the inference client
|
15 |
client = InferenceClient("meta-llama/Llama-3.3-70B-Instruct", provider="cerebras", token=os.getenv("HF_TOKEN"))
|
16 |
+
model = Dia.from_pretrained("nari-labs/Dia-1.6B", compute_dtype="float32")
|
17 |
|
18 |
# Queue for audio streaming
|
19 |
audio_queue = queue.Queue()
|
|
|
44 |
|
45 |
return chunks
|
46 |
|
47 |
+
def postprocess_audio(output_audio_np, speed_factor: float=0.94):
|
48 |
+
"""Taken from https://huggingface.co/spaces/nari-labs/Dia-1.6B/blob/main/app.py"""
|
49 |
+
# Get sample rate from the loaded DAC model
|
50 |
+
output_sr = 44100
|
51 |
+
|
52 |
+
# --- Slow down audio ---
|
53 |
+
original_len = len(output_audio_np)
|
54 |
+
# Ensure speed_factor is positive and not excessively small/large to avoid issues
|
55 |
+
speed_factor = max(0.1, min(speed_factor, 5.0))
|
56 |
+
target_len = int(
|
57 |
+
original_len / speed_factor
|
58 |
+
) # Target length based on speed_factor
|
59 |
+
if (
|
60 |
+
target_len != original_len and target_len > 0
|
61 |
+
): # Only interpolate if length changes and is valid
|
62 |
+
x_original = np.arange(original_len)
|
63 |
+
x_resampled = np.linspace(0, original_len - 1, target_len)
|
64 |
+
resampled_audio_np = np.interp(x_resampled, x_original, output_audio_np)
|
65 |
+
output_audio = (
|
66 |
+
output_sr,
|
67 |
+
resampled_audio_np.astype(np.float32),
|
68 |
+
) # Use resampled audio
|
69 |
+
print(
|
70 |
+
f"Resampled audio from {original_len} to {target_len} samples for {speed_factor:.2f}x speed."
|
71 |
+
)
|
72 |
+
else:
|
73 |
+
output_audio = (
|
74 |
+
output_sr,
|
75 |
+
output_audio_np,
|
76 |
+
) # Keep original if calculation fails or no change
|
77 |
+
print(f"Skipping audio speed adjustment (factor: {speed_factor:.2f}).")
|
78 |
+
# --- End slowdown ---
|
79 |
+
|
80 |
+
print(
|
81 |
+
f"Audio conversion successful. Final shape: {output_audio[1].shape}, Sample Rate: {output_sr}"
|
82 |
+
)
|
83 |
+
|
84 |
+
# Explicitly convert to int16 to prevent Gradio warning
|
85 |
+
if (
|
86 |
+
output_audio[1].dtype == np.float32
|
87 |
+
or output_audio[1].dtype == np.float64
|
88 |
+
):
|
89 |
+
audio_for_gradio = np.clip(output_audio[1], -1.0, 1.0)
|
90 |
+
audio_for_gradio = (audio_for_gradio * 32767).astype(np.int16)
|
91 |
+
output_audio = (output_sr, audio_for_gradio)
|
92 |
+
print("Converted audio to int16 for Gradio output.")
|
93 |
+
return output_audio
|
94 |
+
|
95 |
+
|
96 |
+
@spaces.GPU
|
97 |
def process_audio_chunks(podcast_text):
|
98 |
chunks = split_podcast_into_chunks(podcast_text)
|
99 |
sample_rate = 44100 # Modified from https://huggingface.co/spaces/nari-labs/Dia-1.6B/blob/main/app.py has 44100
|
|
|
101 |
if stop_signal.is_set():
|
102 |
break
|
103 |
set_seed(42)
|
104 |
+
raw_audio = model.generate(
|
105 |
+
chunk,
|
106 |
+
use_torch_compile=False,
|
107 |
+
verbose=False,
|
108 |
+
temperature=1.3
|
109 |
+
top_p=0.95
|
110 |
+
)
|
111 |
+
audio_chunk_np = np.array(raw_audio, dtype=np.float32)
|
112 |
+
audio_queue.put(postprocess_audio(audio_chunk_np))
|
113 |
|
114 |
audio_queue.put(None)
|
115 |
|