Spaces:
Runtime error
Runtime error
import pandas as pd | |
import numpy as np | |
import plotly.graph_objects as go | |
import plotly.express as px | |
from plotly.subplots import make_subplots | |
import gradio as gr | |
from datetime import datetime, date, timedelta | |
from datasets import Dataset | |
from huggingface_hub import HfApi | |
from predibench.pnl import compute_pnls | |
# Configuration | |
AGENT_CHOICES_REPO = "m-ric/predibench-agent-choices" | |
def load_agent_choices(): | |
"""Load agent choices from HuggingFace dataset""" | |
dataset = Dataset.from_parquet(f"hf://datasets/{AGENT_CHOICES_REPO}") | |
return dataset.to_pandas() | |
def calculate_pnl_and_performance(df: pd.DataFrame): | |
"""Calculate real PnL and performance metrics for each agent using historical market data""" | |
investment_dates = sorted(df['date'].unique()) | |
final_pnls, cumulative_pnls, figures = compute_pnls(investment_dates, df) | |
# Convert to the format expected by frontend | |
agents_performance = {} | |
for agent in df['agent_name'].unique(): | |
agent_data = df[df['agent_name'] == agent].copy() | |
cumulative_pnl = cumulative_pnls[agent] | |
agents_performance[agent] = { | |
'total_decisions': len(agent_data), | |
'long_positions': len(agent_data[agent_data['choice'] == 1]), | |
'short_positions': len(agent_data[agent_data['choice'] == -1]), | |
'no_positions': len(agent_data[agent_data['choice'] == 0]), | |
'cumulative_pnl': final_pnls[agent], | |
'sharpe_ratio': 0.0, # Would need more calculation for proper Sharpe | |
'win_rate': 0.0, # Would need daily PnL for win rate | |
'daily_pnl': cumulative_pnl.tolist(), | |
'dates': cumulative_pnl.index.tolist(), | |
'figure': figures[agent] | |
} | |
return agents_performance | |
def create_leaderboard(performance_data): | |
"""Create leaderboard table""" | |
leaderboard_data = [] | |
for agent, metrics in performance_data.items(): | |
leaderboard_data.append({ | |
'Agent': agent.replace('smolagent_', '').replace('--', '/'), | |
'Total Decisions': metrics['total_decisions'], | |
'Long Positions': metrics['long_positions'], | |
'Short Positions': metrics['short_positions'], | |
'No Position': metrics['no_positions'], | |
'Cumulative PnL': f"{metrics['cumulative_pnl']:.3f}", | |
'Sharpe Ratio': f"{metrics['sharpe_ratio']:.3f}", | |
'Win Rate': f"{metrics['win_rate']:.1%}", | |
}) | |
# Sort by cumulative PnL | |
leaderboard_df = pd.DataFrame(leaderboard_data) | |
leaderboard_df['PnL_numeric'] = leaderboard_df['Cumulative PnL'].astype(float) | |
leaderboard_df = leaderboard_df.sort_values('PnL_numeric', ascending=False) | |
leaderboard_df = leaderboard_df.drop('PnL_numeric', axis=1) | |
return leaderboard_df | |
def create_pnl_plot(performance_data, selected_agent=None): | |
"""Create interactive PnL plot""" | |
fig = go.Figure() | |
agents_to_plot = [selected_agent] if selected_agent and selected_agent in performance_data else performance_data.keys() | |
colors = px.colors.qualitative.Set1 | |
for i, agent in enumerate(agents_to_plot): | |
if agent not in performance_data: | |
continue | |
metrics = performance_data[agent] | |
daily_pnl = metrics['daily_pnl'] | |
dates = metrics['dates'] | |
# Calculate cumulative PnL over time | |
cumulative_pnl = np.cumsum([0] + daily_pnl) | |
plot_dates = [dates[0]] + dates if dates else [datetime.now()] | |
fig.add_trace(go.Scatter( | |
x=plot_dates, | |
y=cumulative_pnl, | |
name=agent.replace('smolagent_', '').replace('--', '/'), | |
line=dict(color=colors[i % len(colors)], width=2), | |
mode='lines+markers', | |
hovertemplate='<b>%{fullData.name}</b><br>' + | |
'Date: %{x}<br>' + | |
'Cumulative PnL: %{y:.3f}<br>' + | |
'<extra></extra>' | |
)) | |
fig.update_layout( | |
title="Agent Performance - Cumulative PnL Over Time", | |
xaxis_title="Date", | |
yaxis_title="Cumulative PnL", | |
hovermode='x unified', | |
template="plotly_white", | |
height=500, | |
showlegend=True | |
) | |
# Add horizontal line at 0 | |
fig.add_hline(y=0, line_dash="dash", line_color="gray", opacity=0.5) | |
return fig | |
def create_position_breakdown_plot(performance_data): | |
"""Create position breakdown plot""" | |
agents = list(performance_data.keys()) | |
long_positions = [performance_data[agent]['long_positions'] for agent in agents] | |
short_positions = [performance_data[agent]['short_positions'] for agent in agents] | |
no_positions = [performance_data[agent]['no_positions'] for agent in agents] | |
# Clean agent names for display | |
clean_agents = [agent.replace('smolagent_', '').replace('--', '/') for agent in agents] | |
fig = go.Figure() | |
fig.add_trace(go.Bar( | |
name='Long Positions', | |
x=clean_agents, | |
y=long_positions, | |
marker_color='green', | |
opacity=0.7 | |
)) | |
fig.add_trace(go.Bar( | |
name='Short Positions', | |
x=clean_agents, | |
y=short_positions, | |
marker_color='red', | |
opacity=0.7 | |
)) | |
fig.add_trace(go.Bar( | |
name='No Position', | |
x=clean_agents, | |
y=no_positions, | |
marker_color='gray', | |
opacity=0.7 | |
)) | |
fig.update_layout( | |
title="Position Breakdown by Agent", | |
xaxis_title="Agent", | |
yaxis_title="Number of Decisions", | |
barmode='stack', | |
template="plotly_white", | |
height=400 | |
) | |
return fig | |
def get_agent_list(df): | |
"""Get list of agents for dropdown""" | |
if df.empty: | |
return ["No agents available"] | |
agents = df['agent_name'].unique() | |
clean_agents = [agent.replace('smolagent_', '').replace('--', '/') for agent in agents] | |
return ["All Agents"] + clean_agents | |
def update_plot(selected_agent): | |
"""Update plot based on selected agent""" | |
df = load_agent_choices() | |
performance_data = calculate_pnl_and_performance(df) | |
# Map clean name back to original name | |
if selected_agent != "All Agents" and selected_agent != "No agents available": | |
original_name = None | |
for agent in performance_data.keys(): | |
clean_name = agent.replace('smolagent_', '').replace('--', '/') | |
if clean_name == selected_agent: | |
original_name = agent | |
break | |
selected_agent = original_name | |
else: | |
selected_agent = None | |
return create_pnl_plot(performance_data, selected_agent) | |
def refresh_data(): | |
"""Refresh all data and return updated components""" | |
df = load_agent_choices() | |
performance_data = calculate_pnl_and_performance(df) | |
leaderboard = create_leaderboard(performance_data) | |
pnl_plot = create_pnl_plot(performance_data) | |
position_plot = create_position_breakdown_plot(performance_data) | |
agent_list = get_agent_list(df) | |
portfolio_list = list(performance_data.keys()) | |
first_portfolio_plot = performance_data[portfolio_list[0]]['figure'] if portfolio_list else None | |
return (leaderboard, pnl_plot, position_plot, | |
gr.update(choices=agent_list), | |
gr.update(choices=portfolio_list, value=portfolio_list[0] if portfolio_list else None), | |
first_portfolio_plot, | |
f"Last updated: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}") | |
# Initialize data | |
df = load_agent_choices() | |
performance_data = calculate_pnl_and_performance(df) | |
# Create Gradio interface | |
with gr.Blocks(title="PrediBench Leaderboard", theme=gr.themes.Soft()) as demo: | |
gr.Markdown("# π PrediBench Agent Leaderboard") | |
gr.Markdown("Track the performance of AI agents making predictions on Polymarket questions") | |
with gr.Row(): | |
refresh_btn = gr.Button("π Refresh Data", variant="primary") | |
last_updated = gr.Textbox( | |
value=f"Last updated: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}", | |
label="Status", | |
interactive=False, | |
scale=3 | |
) | |
with gr.Tabs(): | |
with gr.TabItem("π Leaderboard"): | |
gr.Markdown("### Agent Performance Ranking") | |
leaderboard_table = gr.Dataframe( | |
value=create_leaderboard(performance_data), | |
interactive=False, | |
wrap=True | |
) | |
gr.Markdown("### Position Breakdown") | |
position_breakdown = gr.Plot( | |
value=create_position_breakdown_plot(performance_data) | |
) | |
with gr.TabItem("π Individual Performance"): | |
gr.Markdown("### Select Agent to View Detailed Performance") | |
with gr.Row(): | |
agent_dropdown = gr.Dropdown( | |
choices=get_agent_list(df), | |
value="All Agents", | |
label="Select Agent", | |
scale=3 | |
) | |
pnl_plot = gr.Plot( | |
value=create_pnl_plot(performance_data) | |
) | |
# Update plot when agent selection changes | |
agent_dropdown.change( | |
fn=update_plot, | |
inputs=agent_dropdown, | |
outputs=pnl_plot | |
) | |
with gr.TabItem("π Portfolio Details"): | |
gr.Markdown("### Detailed Portfolio Analysis") | |
with gr.Row(): | |
portfolio_dropdown = gr.Dropdown( | |
choices=[agent for agent in performance_data.keys()], | |
value=list(performance_data.keys())[0] if performance_data else None, | |
label="Select Agent Portfolio", | |
scale=3 | |
) | |
portfolio_plot = gr.Plot( | |
value=performance_data[list(performance_data.keys())[0]]['figure'] if performance_data else None | |
) | |
# Update portfolio plot when agent selection changes | |
def update_portfolio_plot(selected_agent): | |
if selected_agent and selected_agent in performance_data: | |
return performance_data[selected_agent]['figure'] | |
return None | |
portfolio_dropdown.change( | |
fn=update_portfolio_plot, | |
inputs=portfolio_dropdown, | |
outputs=portfolio_plot | |
) | |
# Refresh functionality | |
refresh_btn.click( | |
fn=refresh_data, | |
outputs=[leaderboard_table, pnl_plot, position_breakdown, agent_dropdown, portfolio_dropdown, portfolio_plot, last_updated] | |
) | |
if __name__ == "__main__": | |
demo.launch(server_name="0.0.0.0", server_port=7860) |