Spaces:
Runtime error
Runtime error
Commit
Β·
9568e9c
0
Parent(s):
First commit
Browse files- README.md +34 -0
- app.py +290 -0
- requirements.txt +5 -0
README.md
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
title: PrediBench Frontend
|
3 |
+
emoji: π
|
4 |
+
colorFrom: green
|
5 |
+
colorTo: blue
|
6 |
+
sdk: gradio
|
7 |
+
sdk_version: 5.42.0
|
8 |
+
app_file: app.py
|
9 |
+
pinned: false
|
10 |
+
license: apache-2.0
|
11 |
+
---
|
12 |
+
|
13 |
+
# PrediBench Frontend
|
14 |
+
|
15 |
+
Interactive leaderboard and performance dashboard for AI agent predictions on Polymarket.
|
16 |
+
|
17 |
+
## Features
|
18 |
+
|
19 |
+
- π **Leaderboard Tab**: Rankings by PnL, Sharpe ratio, win rate
|
20 |
+
- π **Performance Tab**: Interactive charts with agent selection
|
21 |
+
- π **Daily Refresh**: Loads latest data from HuggingFace datasets
|
22 |
+
- π± **Responsive UI**: Clean Gradio interface
|
23 |
+
|
24 |
+
## Data Source
|
25 |
+
|
26 |
+
Loads from:
|
27 |
+
- `m-ric/predibench-agent-choices`
|
28 |
+
|
29 |
+
## Usage
|
30 |
+
|
31 |
+
1. View overall leaderboard in the first tab
|
32 |
+
2. Select specific agents in the performance tab
|
33 |
+
3. Explore interactive Plotly visualizations
|
34 |
+
4. Refresh data anytime with the button
|
app.py
ADDED
@@ -0,0 +1,290 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import numpy as np
|
3 |
+
import plotly.graph_objects as go
|
4 |
+
import plotly.express as px
|
5 |
+
from plotly.subplots import make_subplots
|
6 |
+
import gradio as gr
|
7 |
+
from datetime import datetime, date
|
8 |
+
from datasets import Dataset
|
9 |
+
from huggingface_hub import HfApi
|
10 |
+
|
11 |
+
# Configuration
|
12 |
+
AGENT_CHOICES_REPO = "m-ric/predibench-agent-choices"
|
13 |
+
|
14 |
+
def load_agent_choices():
|
15 |
+
"""Load agent choices from HuggingFace dataset"""
|
16 |
+
try:
|
17 |
+
dataset = Dataset.from_parquet(f"hf://datasets/{AGENT_CHOICES_REPO}")
|
18 |
+
return dataset.to_pandas()
|
19 |
+
except Exception as e:
|
20 |
+
print(f"Error loading dataset: {e}")
|
21 |
+
# Return dummy data for testing
|
22 |
+
return pd.DataFrame({
|
23 |
+
'agent_name': ['gpt-4o', 'claude-sonnet', 'test_random'],
|
24 |
+
'date': [date.today()] * 3,
|
25 |
+
'question': ['Sample question'] * 3,
|
26 |
+
'choice': [1, -1, 0],
|
27 |
+
'question_id': ['123'] * 3
|
28 |
+
})
|
29 |
+
|
30 |
+
def calculate_pnl_and_performance(df: pd.DataFrame):
|
31 |
+
"""Calculate PnL and performance metrics for each agent"""
|
32 |
+
# This is a simplified version - in production you'd need actual market returns
|
33 |
+
# For now, simulate returns based on random walk
|
34 |
+
np.random.seed(42) # For reproducible results
|
35 |
+
|
36 |
+
agents_performance = {}
|
37 |
+
|
38 |
+
for agent in df['agent_name'].unique():
|
39 |
+
agent_data = df[df['agent_name'] == agent].copy()
|
40 |
+
|
41 |
+
# Simulate daily PnL based on positions
|
42 |
+
# In real implementation, this would use actual market returns
|
43 |
+
daily_pnl = []
|
44 |
+
cumulative_pnl = 0
|
45 |
+
|
46 |
+
for _, row in agent_data.iterrows():
|
47 |
+
# Simulate daily return based on position
|
48 |
+
if row['choice'] == 1: # Long position
|
49 |
+
daily_return = np.random.normal(0.01, 0.1) # Slightly positive expected return
|
50 |
+
elif row['choice'] == -1: # Short position
|
51 |
+
daily_return = -np.random.normal(0.01, 0.1) # Inverse return
|
52 |
+
else: # No position
|
53 |
+
daily_return = 0
|
54 |
+
|
55 |
+
daily_pnl.append(daily_return)
|
56 |
+
cumulative_pnl += daily_return
|
57 |
+
|
58 |
+
agents_performance[agent] = {
|
59 |
+
'total_decisions': len(agent_data),
|
60 |
+
'long_positions': len(agent_data[agent_data['choice'] == 1]),
|
61 |
+
'short_positions': len(agent_data[agent_data['choice'] == -1]),
|
62 |
+
'no_positions': len(agent_data[agent_data['choice'] == 0]),
|
63 |
+
'cumulative_pnl': cumulative_pnl,
|
64 |
+
'sharpe_ratio': np.mean(daily_pnl) / (np.std(daily_pnl) + 1e-8) * np.sqrt(252),
|
65 |
+
'win_rate': len([x for x in daily_pnl if x > 0]) / len(daily_pnl) if daily_pnl else 0,
|
66 |
+
'daily_pnl': daily_pnl,
|
67 |
+
'dates': agent_data['date'].tolist()
|
68 |
+
}
|
69 |
+
|
70 |
+
return agents_performance
|
71 |
+
|
72 |
+
def create_leaderboard(performance_data):
|
73 |
+
"""Create leaderboard table"""
|
74 |
+
leaderboard_data = []
|
75 |
+
|
76 |
+
for agent, metrics in performance_data.items():
|
77 |
+
leaderboard_data.append({
|
78 |
+
'Agent': agent.replace('smolagent_', '').replace('--', '/'),
|
79 |
+
'Total Decisions': metrics['total_decisions'],
|
80 |
+
'Long Positions': metrics['long_positions'],
|
81 |
+
'Short Positions': metrics['short_positions'],
|
82 |
+
'No Position': metrics['no_positions'],
|
83 |
+
'Cumulative PnL': f"{metrics['cumulative_pnl']:.3f}",
|
84 |
+
'Sharpe Ratio': f"{metrics['sharpe_ratio']:.3f}",
|
85 |
+
'Win Rate': f"{metrics['win_rate']:.1%}",
|
86 |
+
})
|
87 |
+
|
88 |
+
# Sort by cumulative PnL
|
89 |
+
leaderboard_df = pd.DataFrame(leaderboard_data)
|
90 |
+
leaderboard_df['PnL_numeric'] = leaderboard_df['Cumulative PnL'].astype(float)
|
91 |
+
leaderboard_df = leaderboard_df.sort_values('PnL_numeric', ascending=False)
|
92 |
+
leaderboard_df = leaderboard_df.drop('PnL_numeric', axis=1)
|
93 |
+
|
94 |
+
return leaderboard_df
|
95 |
+
|
96 |
+
def create_pnl_plot(performance_data, selected_agent=None):
|
97 |
+
"""Create interactive PnL plot"""
|
98 |
+
fig = go.Figure()
|
99 |
+
|
100 |
+
agents_to_plot = [selected_agent] if selected_agent and selected_agent in performance_data else performance_data.keys()
|
101 |
+
|
102 |
+
colors = px.colors.qualitative.Set1
|
103 |
+
|
104 |
+
for i, agent in enumerate(agents_to_plot):
|
105 |
+
if agent not in performance_data:
|
106 |
+
continue
|
107 |
+
|
108 |
+
metrics = performance_data[agent]
|
109 |
+
daily_pnl = metrics['daily_pnl']
|
110 |
+
dates = metrics['dates']
|
111 |
+
|
112 |
+
# Calculate cumulative PnL over time
|
113 |
+
cumulative_pnl = np.cumsum([0] + daily_pnl)
|
114 |
+
plot_dates = [dates[0]] + dates if dates else [datetime.now()]
|
115 |
+
|
116 |
+
fig.add_trace(go.Scatter(
|
117 |
+
x=plot_dates,
|
118 |
+
y=cumulative_pnl,
|
119 |
+
name=agent.replace('smolagent_', '').replace('--', '/'),
|
120 |
+
line=dict(color=colors[i % len(colors)], width=2),
|
121 |
+
mode='lines+markers',
|
122 |
+
hovertemplate='<b>%{fullData.name}</b><br>' +
|
123 |
+
'Date: %{x}<br>' +
|
124 |
+
'Cumulative PnL: %{y:.3f}<br>' +
|
125 |
+
'<extra></extra>'
|
126 |
+
))
|
127 |
+
|
128 |
+
fig.update_layout(
|
129 |
+
title="Agent Performance - Cumulative PnL Over Time",
|
130 |
+
xaxis_title="Date",
|
131 |
+
yaxis_title="Cumulative PnL",
|
132 |
+
hovermode='x unified',
|
133 |
+
template="plotly_white",
|
134 |
+
height=500,
|
135 |
+
showlegend=True
|
136 |
+
)
|
137 |
+
|
138 |
+
# Add horizontal line at 0
|
139 |
+
fig.add_hline(y=0, line_dash="dash", line_color="gray", opacity=0.5)
|
140 |
+
|
141 |
+
return fig
|
142 |
+
|
143 |
+
def create_position_breakdown_plot(performance_data):
|
144 |
+
"""Create position breakdown plot"""
|
145 |
+
agents = list(performance_data.keys())
|
146 |
+
long_positions = [performance_data[agent]['long_positions'] for agent in agents]
|
147 |
+
short_positions = [performance_data[agent]['short_positions'] for agent in agents]
|
148 |
+
no_positions = [performance_data[agent]['no_positions'] for agent in agents]
|
149 |
+
|
150 |
+
# Clean agent names for display
|
151 |
+
clean_agents = [agent.replace('smolagent_', '').replace('--', '/') for agent in agents]
|
152 |
+
|
153 |
+
fig = go.Figure()
|
154 |
+
|
155 |
+
fig.add_trace(go.Bar(
|
156 |
+
name='Long Positions',
|
157 |
+
x=clean_agents,
|
158 |
+
y=long_positions,
|
159 |
+
marker_color='green',
|
160 |
+
opacity=0.7
|
161 |
+
))
|
162 |
+
|
163 |
+
fig.add_trace(go.Bar(
|
164 |
+
name='Short Positions',
|
165 |
+
x=clean_agents,
|
166 |
+
y=short_positions,
|
167 |
+
marker_color='red',
|
168 |
+
opacity=0.7
|
169 |
+
))
|
170 |
+
|
171 |
+
fig.add_trace(go.Bar(
|
172 |
+
name='No Position',
|
173 |
+
x=clean_agents,
|
174 |
+
y=no_positions,
|
175 |
+
marker_color='gray',
|
176 |
+
opacity=0.7
|
177 |
+
))
|
178 |
+
|
179 |
+
fig.update_layout(
|
180 |
+
title="Position Breakdown by Agent",
|
181 |
+
xaxis_title="Agent",
|
182 |
+
yaxis_title="Number of Decisions",
|
183 |
+
barmode='stack',
|
184 |
+
template="plotly_white",
|
185 |
+
height=400
|
186 |
+
)
|
187 |
+
|
188 |
+
return fig
|
189 |
+
|
190 |
+
def get_agent_list(df):
|
191 |
+
"""Get list of agents for dropdown"""
|
192 |
+
if df.empty:
|
193 |
+
return ["No agents available"]
|
194 |
+
agents = df['agent_name'].unique()
|
195 |
+
clean_agents = [agent.replace('smolagent_', '').replace('--', '/') for agent in agents]
|
196 |
+
return ["All Agents"] + clean_agents
|
197 |
+
|
198 |
+
def update_plot(selected_agent):
|
199 |
+
"""Update plot based on selected agent"""
|
200 |
+
df = load_agent_choices()
|
201 |
+
performance_data = calculate_pnl_and_performance(df)
|
202 |
+
|
203 |
+
# Map clean name back to original name
|
204 |
+
if selected_agent != "All Agents" and selected_agent != "No agents available":
|
205 |
+
original_name = None
|
206 |
+
for agent in performance_data.keys():
|
207 |
+
clean_name = agent.replace('smolagent_', '').replace('--', '/')
|
208 |
+
if clean_name == selected_agent:
|
209 |
+
original_name = agent
|
210 |
+
break
|
211 |
+
selected_agent = original_name
|
212 |
+
else:
|
213 |
+
selected_agent = None
|
214 |
+
|
215 |
+
return create_pnl_plot(performance_data, selected_agent)
|
216 |
+
|
217 |
+
def refresh_data():
|
218 |
+
"""Refresh all data and return updated components"""
|
219 |
+
df = load_agent_choices()
|
220 |
+
performance_data = calculate_pnl_and_performance(df)
|
221 |
+
|
222 |
+
leaderboard = create_leaderboard(performance_data)
|
223 |
+
pnl_plot = create_pnl_plot(performance_data)
|
224 |
+
position_plot = create_position_breakdown_plot(performance_data)
|
225 |
+
agent_list = get_agent_list(df)
|
226 |
+
|
227 |
+
return leaderboard, pnl_plot, position_plot, gr.update(choices=agent_list), f"Last updated: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}"
|
228 |
+
|
229 |
+
# Initialize data
|
230 |
+
df = load_agent_choices()
|
231 |
+
performance_data = calculate_pnl_and_performance(df)
|
232 |
+
|
233 |
+
# Create Gradio interface
|
234 |
+
with gr.Blocks(title="PrediBench Leaderboard", theme=gr.themes.Soft()) as demo:
|
235 |
+
gr.Markdown("# π PrediBench Agent Leaderboard")
|
236 |
+
gr.Markdown("Track the performance of AI agents making predictions on Polymarket questions")
|
237 |
+
|
238 |
+
with gr.Row():
|
239 |
+
refresh_btn = gr.Button("π Refresh Data", variant="primary")
|
240 |
+
last_updated = gr.Textbox(
|
241 |
+
value=f"Last updated: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}",
|
242 |
+
label="Status",
|
243 |
+
interactive=False,
|
244 |
+
scale=3
|
245 |
+
)
|
246 |
+
|
247 |
+
with gr.Tabs():
|
248 |
+
with gr.TabItem("π Leaderboard"):
|
249 |
+
gr.Markdown("### Agent Performance Ranking")
|
250 |
+
leaderboard_table = gr.Dataframe(
|
251 |
+
value=create_leaderboard(performance_data),
|
252 |
+
interactive=False,
|
253 |
+
wrap=True
|
254 |
+
)
|
255 |
+
|
256 |
+
gr.Markdown("### Position Breakdown")
|
257 |
+
position_breakdown = gr.Plot(
|
258 |
+
value=create_position_breakdown_plot(performance_data)
|
259 |
+
)
|
260 |
+
|
261 |
+
with gr.TabItem("π Individual Performance"):
|
262 |
+
gr.Markdown("### Select Agent to View Detailed Performance")
|
263 |
+
|
264 |
+
with gr.Row():
|
265 |
+
agent_dropdown = gr.Dropdown(
|
266 |
+
choices=get_agent_list(df),
|
267 |
+
value="All Agents",
|
268 |
+
label="Select Agent",
|
269 |
+
scale=3
|
270 |
+
)
|
271 |
+
|
272 |
+
pnl_plot = gr.Plot(
|
273 |
+
value=create_pnl_plot(performance_data)
|
274 |
+
)
|
275 |
+
|
276 |
+
# Update plot when agent selection changes
|
277 |
+
agent_dropdown.change(
|
278 |
+
fn=update_plot,
|
279 |
+
inputs=agent_dropdown,
|
280 |
+
outputs=pnl_plot
|
281 |
+
)
|
282 |
+
|
283 |
+
# Refresh functionality
|
284 |
+
refresh_btn.click(
|
285 |
+
fn=refresh_data,
|
286 |
+
outputs=[leaderboard_table, pnl_plot, position_breakdown, agent_dropdown, last_updated]
|
287 |
+
)
|
288 |
+
|
289 |
+
if __name__ == "__main__":
|
290 |
+
demo.launch(server_name="0.0.0.0", server_port=7860)
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio
|
2 |
+
datasets
|
3 |
+
huggingface_hub
|
4 |
+
plotly
|
5 |
+
git+https://github.com/m-ric/predibench-core
|