File size: 3,149 Bytes
be11144
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
#include <unittest/unittest.h>
#include <thrust/reverse.h>
#include <thrust/execution_policy.h>


template<typename ExecutionPolicy, typename Iterator>
__global__
void reverse_kernel(ExecutionPolicy exec, Iterator first, Iterator last)
{
  thrust::reverse(exec, first, last);
}


template<typename ExecutionPolicy>
void TestReverseDevice(ExecutionPolicy exec)
{
  size_t n = 1000;
  thrust::host_vector<int> h_data = unittest::random_integers<int>(n);
  thrust::device_vector<int> d_data = h_data;
  
  thrust::reverse(h_data.begin(), h_data.end());

  reverse_kernel<<<1,1>>>(exec, raw_pointer_cast(d_data.data()), raw_pointer_cast(d_data.data() + d_data.size()));
  cudaError_t const err = cudaDeviceSynchronize();
  ASSERT_EQUAL(cudaSuccess, err);
  
  ASSERT_EQUAL(h_data, d_data);
};


void TestReverseDeviceSeq()
{
  TestReverseDevice(thrust::seq);
}
DECLARE_UNITTEST(TestReverseDeviceSeq);


void TestReverseDeviceDevice()
{
  TestReverseDevice(thrust::device);
}
DECLARE_UNITTEST(TestReverseDeviceDevice);


template<typename ExecutionPolicy, typename Iterator1, typename Iterator2>
__global__
void reverse_copy_kernel(ExecutionPolicy exec, Iterator1 first, Iterator1 last, Iterator2 result)
{
  thrust::reverse_copy(exec, first, last, result);
}


template<typename ExecutionPolicy>
void TestReverseCopyDevice(ExecutionPolicy exec)
{
  size_t n = 1000;
  thrust::host_vector<int> h_data = unittest::random_integers<int>(n);
  thrust::device_vector<int> d_data = h_data;

  thrust::host_vector<int> h_result(n);
  thrust::device_vector<int> d_result(n);

  thrust::reverse_copy(h_data.begin(), h_data.end(), h_result.begin());

  reverse_copy_kernel<<<1,1>>>(exec, d_data.begin(), d_data.end(), d_result.begin());
  cudaError_t const err = cudaDeviceSynchronize();
  ASSERT_EQUAL(cudaSuccess, err);

  ASSERT_EQUAL(h_result, d_result);
};


void TestReverseCopyDeviceSeq()
{
  TestReverseCopyDevice(thrust::seq);
}
DECLARE_UNITTEST(TestReverseCopyDeviceSeq);


void TestReverseCopyDeviceDevice()
{
  TestReverseCopyDevice(thrust::device);
}
DECLARE_UNITTEST(TestReverseCopyDeviceDevice);


void TestReverseCudaStreams()
{
  typedef thrust::device_vector<int> Vector;
  Vector data(5);
  data[0] = 1;
  data[1] = 2;
  data[2] = 3;
  data[3] = 4;
  data[4] = 5;

  cudaStream_t s;
  cudaStreamCreate(&s);

  thrust::reverse(thrust::cuda::par.on(s), data.begin(), data.end());

  cudaStreamSynchronize(s);

  Vector ref(5);
  ref[0] = 5;
  ref[1] = 4;
  ref[2] = 3;
  ref[3] = 2;
  ref[4] = 1;

  ASSERT_EQUAL(ref, data);

  cudaStreamDestroy(s);
}
DECLARE_UNITTEST(TestReverseCudaStreams);


void TestReverseCopyCudaStreams()
{
  typedef thrust::device_vector<int> Vector;
  Vector data(5);
  data[0] = 1;
  data[1] = 2;
  data[2] = 3;
  data[3] = 4;
  data[4] = 5;

  Vector result(5);

  cudaStream_t s;
  cudaStreamCreate(&s);

  thrust::reverse_copy(thrust::cuda::par.on(s), data.begin(), data.end(), result.begin());

  cudaStreamSynchronize(s);

  Vector ref(5);
  ref[0] = 5;
  ref[1] = 4;
  ref[2] = 3;
  ref[3] = 2;
  ref[4] = 1;

  ASSERT_EQUAL(ref, result);

  cudaStreamDestroy(s);
}
DECLARE_UNITTEST(TestReverseCopyCudaStreams);