File size: 4,736 Bytes
be11144
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
#include <thrust/detail/config.h>

#if THRUST_CPP_DIALECT >= 2011
#include <thrust/random.h>
#include <thrust/sequence.h>
#include <thrust/shuffle.h>
#include <thrust/sort.h>
#include <unittest/unittest.h>
#include <map>

template <typename Vector>
void TestShuffleSimple() {
  Vector data(5);
  data[0] = 0;
  data[1] = 1;
  data[2] = 2;
  data[3] = 3;
  data[4] = 4;
  Vector shuffled(data.begin(), data.end());
  thrust::default_random_engine g(2);
  thrust::shuffle(shuffled.begin(), shuffled.end(), g);
  thrust::sort(shuffled.begin(), shuffled.end());
  // Check all of our data is present
  // This only tests for strange conditions like duplicated elements
  ASSERT_EQUAL(shuffled, data);
}
DECLARE_VECTOR_UNITTEST(TestShuffleSimple);

template <typename Vector>
void TestShuffleCopySimple() {
  Vector data(5);
  data[0] = 0;
  data[1] = 1;
  data[2] = 2;
  data[3] = 3;
  data[4] = 4;
  Vector shuffled(5);
  thrust::default_random_engine g(2);
  thrust::shuffle_copy(data.begin(), data.end(), shuffled.begin(), g);
  g.seed(2);
  thrust::shuffle(data.begin(), data.end(), g);
  ASSERT_EQUAL(shuffled, data);
}
DECLARE_VECTOR_UNITTEST(TestShuffleCopySimple);

template <typename T>
void TestHostDeviceIdentical(size_t m) {
  thrust::host_vector<T> host_result(m);
  thrust::host_vector<T> device_result(m);
  thrust::sequence(host_result.begin(), host_result.end(), 0llu);
  thrust::sequence(device_result.begin(), device_result.end(), 0llu);

  thrust::default_random_engine host_g(183);
  thrust::default_random_engine device_g(183);

  thrust::shuffle(host_result.begin(), host_result.end(), host_g);
  thrust::shuffle(device_result.begin(), device_result.end(), device_g);

  ASSERT_EQUAL(device_result, host_result);
}
DECLARE_VARIABLE_UNITTEST(TestHostDeviceIdentical);

// Individual input keys should be permuted to output locations with uniform
// probability. Perform chi-squared test with confidence 99.9%.
template <typename Vector>
void TestShuffleKeyPosition() {
  typedef typename Vector::value_type T;
  size_t m = 20;
  size_t num_samples = 100;
  thrust::host_vector<size_t> index_sum(m, 0);
  thrust::host_vector<T> sequence(m);
  thrust::sequence(sequence.begin(), sequence.end(), T(0));

  for (size_t i = 0; i < num_samples; i++) {
    Vector shuffled(sequence.begin(), sequence.end());
    thrust::default_random_engine g(i);
    thrust::shuffle(shuffled.begin(), shuffled.end(), g);
    thrust::host_vector<T> tmp(shuffled.begin(), shuffled.end());

    for (auto j = 0ull; j < m; j++) {
      index_sum[tmp[j]] += j;
    }
  }
  double expected_average_position = static_cast<double>(m - 1) / 2;
  double chi_squared = 0.0;
  for (auto j = 0ull; j < m; j++) {
    double average_position = static_cast<double>(index_sum[j]) / num_samples;
    chi_squared += std::pow(expected_average_position - average_position, 2) /
                   expected_average_position;
  }
  // Tabulated chi-squared critical value for m-1=19 degrees of freedom
  // and 99.9% confidence
  double confidence_threshold = 43.82;
  ASSERT_LESS(chi_squared, confidence_threshold);
}
DECLARE_INTEGRAL_VECTOR_UNITTEST(TestShuffleKeyPosition);

struct vector_compare {
  template <typename VectorT>
  bool operator()(const VectorT& a, const VectorT& b) const {
    for (auto i = 0ull; i < a.size(); i++) {
      if (a[i] < b[i]) return true;
      if (a[i] > b[i]) return false;
    }
    return false;
  }
};

// Brute force check permutations are uniformly distributed on small input
// Uses a chi-squared test indicating 99% confidence the output is uniformly
// random
template <typename Vector>
void TestShuffleUniformPermutation() {
  typedef typename Vector::value_type T;

  size_t m = 5;
  size_t num_samples = 1000;
  size_t total_permutations = 1 * 2 * 3 * 4 * 5;
  std::map<thrust::host_vector<T>, size_t, vector_compare> permutation_counts;
  Vector sequence(m);
  thrust::sequence(sequence.begin(), sequence.end(), T(0));
  thrust::default_random_engine g(17);
  for (auto i = 0ull; i < num_samples; i++) {
    thrust::shuffle(sequence.begin(), sequence.end(), g);
    thrust::host_vector<T> tmp(sequence.begin(), sequence.end());
    permutation_counts[tmp]++;
  }

  ASSERT_EQUAL(permutation_counts.size(), total_permutations);

  double chi_squared = 0.0;
  double expected_count = static_cast<double>(num_samples) / total_permutations;
  for (auto kv : permutation_counts) {
    chi_squared += std::pow(expected_count - kv.second, 2) / expected_count;
  }
  // Tabulated chi-squared critical value for 119 degrees of freedom (5! - 1)
  // and 99% confidence
  double confidence_threshold = 157.8;
  ASSERT_LESS(chi_squared, confidence_threshold);
}
DECLARE_VECTOR_UNITTEST(TestShuffleUniformPermutation);
#endif