Spaces:
Runtime error
Runtime error
File size: 13,120 Bytes
be11144 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 |
/*
tests/test_sequences_and_iterators.cpp -- supporting Pythons' sequence protocol, iterators,
etc.
Copyright (c) 2016 Wenzel Jakob <[email protected]>
All rights reserved. Use of this source code is governed by a
BSD-style license that can be found in the LICENSE file.
*/
#include "pybind11_tests.h"
#include "constructor_stats.h"
#include <pybind11/operators.h>
#include <pybind11/stl.h>
#include <algorithm>
template<typename T>
class NonZeroIterator {
const T* ptr_;
public:
NonZeroIterator(const T* ptr) : ptr_(ptr) {}
const T& operator*() const { return *ptr_; }
NonZeroIterator& operator++() { ++ptr_; return *this; }
};
class NonZeroSentinel {};
template<typename A, typename B>
bool operator==(const NonZeroIterator<std::pair<A, B>>& it, const NonZeroSentinel&) {
return !(*it).first || !(*it).second;
}
template <typename PythonType>
py::list test_random_access_iterator(PythonType x) {
if (x.size() < 5)
throw py::value_error("Please provide at least 5 elements for testing.");
auto checks = py::list();
auto assert_equal = [&checks](py::handle a, py::handle b) {
auto result = PyObject_RichCompareBool(a.ptr(), b.ptr(), Py_EQ);
if (result == -1) { throw py::error_already_set(); }
checks.append(result != 0);
};
auto it = x.begin();
assert_equal(x[0], *it);
assert_equal(x[0], it[0]);
assert_equal(x[1], it[1]);
assert_equal(x[1], *(++it));
assert_equal(x[1], *(it++));
assert_equal(x[2], *it);
assert_equal(x[3], *(it += 1));
assert_equal(x[2], *(--it));
assert_equal(x[2], *(it--));
assert_equal(x[1], *it);
assert_equal(x[0], *(it -= 1));
assert_equal(it->attr("real"), x[0].attr("real"));
assert_equal((it + 1)->attr("real"), x[1].attr("real"));
assert_equal(x[1], *(it + 1));
assert_equal(x[1], *(1 + it));
it += 3;
assert_equal(x[1], *(it - 2));
checks.append(static_cast<std::size_t>(x.end() - x.begin()) == x.size());
checks.append((x.begin() + static_cast<std::ptrdiff_t>(x.size())) == x.end());
checks.append(x.begin() < x.end());
return checks;
}
TEST_SUBMODULE(sequences_and_iterators, m) {
// test_sliceable
class Sliceable{
public:
Sliceable(int n): size(n) {}
int start,stop,step;
int size;
};
py::class_<Sliceable>(m,"Sliceable")
.def(py::init<int>())
.def("__getitem__",[](const Sliceable &s, py::slice slice) {
ssize_t start, stop, step, slicelength;
if (!slice.compute(s.size, &start, &stop, &step, &slicelength))
throw py::error_already_set();
int istart = static_cast<int>(start);
int istop = static_cast<int>(stop);
int istep = static_cast<int>(step);
return std::make_tuple(istart,istop,istep);
})
;
// test_sequence
class Sequence {
public:
Sequence(size_t size) : m_size(size) {
print_created(this, "of size", m_size);
m_data = new float[size];
memset(m_data, 0, sizeof(float) * size);
}
Sequence(const std::vector<float> &value) : m_size(value.size()) {
print_created(this, "of size", m_size, "from std::vector");
m_data = new float[m_size];
memcpy(m_data, &value[0], sizeof(float) * m_size);
}
Sequence(const Sequence &s) : m_size(s.m_size) {
print_copy_created(this);
m_data = new float[m_size];
memcpy(m_data, s.m_data, sizeof(float)*m_size);
}
Sequence(Sequence &&s) : m_size(s.m_size), m_data(s.m_data) {
print_move_created(this);
s.m_size = 0;
s.m_data = nullptr;
}
~Sequence() { print_destroyed(this); delete[] m_data; }
Sequence &operator=(const Sequence &s) {
if (&s != this) {
delete[] m_data;
m_size = s.m_size;
m_data = new float[m_size];
memcpy(m_data, s.m_data, sizeof(float)*m_size);
}
print_copy_assigned(this);
return *this;
}
Sequence &operator=(Sequence &&s) {
if (&s != this) {
delete[] m_data;
m_size = s.m_size;
m_data = s.m_data;
s.m_size = 0;
s.m_data = nullptr;
}
print_move_assigned(this);
return *this;
}
bool operator==(const Sequence &s) const {
if (m_size != s.size()) return false;
for (size_t i = 0; i < m_size; ++i)
if (m_data[i] != s[i])
return false;
return true;
}
bool operator!=(const Sequence &s) const { return !operator==(s); }
float operator[](size_t index) const { return m_data[index]; }
float &operator[](size_t index) { return m_data[index]; }
bool contains(float v) const {
for (size_t i = 0; i < m_size; ++i)
if (v == m_data[i])
return true;
return false;
}
Sequence reversed() const {
Sequence result(m_size);
for (size_t i = 0; i < m_size; ++i)
result[m_size - i - 1] = m_data[i];
return result;
}
size_t size() const { return m_size; }
const float *begin() const { return m_data; }
const float *end() const { return m_data+m_size; }
private:
size_t m_size;
float *m_data;
};
py::class_<Sequence>(m, "Sequence")
.def(py::init<size_t>())
.def(py::init<const std::vector<float>&>())
/// Bare bones interface
.def("__getitem__", [](const Sequence &s, size_t i) {
if (i >= s.size()) throw py::index_error();
return s[i];
})
.def("__setitem__", [](Sequence &s, size_t i, float v) {
if (i >= s.size()) throw py::index_error();
s[i] = v;
})
.def("__len__", &Sequence::size)
/// Optional sequence protocol operations
.def("__iter__", [](const Sequence &s) { return py::make_iterator(s.begin(), s.end()); },
py::keep_alive<0, 1>() /* Essential: keep object alive while iterator exists */)
.def("__contains__", [](const Sequence &s, float v) { return s.contains(v); })
.def("__reversed__", [](const Sequence &s) -> Sequence { return s.reversed(); })
/// Slicing protocol (optional)
.def("__getitem__", [](const Sequence &s, py::slice slice) -> Sequence* {
size_t start, stop, step, slicelength;
if (!slice.compute(s.size(), &start, &stop, &step, &slicelength))
throw py::error_already_set();
Sequence *seq = new Sequence(slicelength);
for (size_t i = 0; i < slicelength; ++i) {
(*seq)[i] = s[start]; start += step;
}
return seq;
})
.def("__setitem__", [](Sequence &s, py::slice slice, const Sequence &value) {
size_t start, stop, step, slicelength;
if (!slice.compute(s.size(), &start, &stop, &step, &slicelength))
throw py::error_already_set();
if (slicelength != value.size())
throw std::runtime_error("Left and right hand size of slice assignment have different sizes!");
for (size_t i = 0; i < slicelength; ++i) {
s[start] = value[i]; start += step;
}
})
/// Comparisons
.def(py::self == py::self)
.def(py::self != py::self)
// Could also define py::self + py::self for concatenation, etc.
;
// test_map_iterator
// Interface of a map-like object that isn't (directly) an unordered_map, but provides some basic
// map-like functionality.
class StringMap {
public:
StringMap() = default;
StringMap(std::unordered_map<std::string, std::string> init)
: map(std::move(init)) {}
void set(std::string key, std::string val) { map[key] = val; }
std::string get(std::string key) const { return map.at(key); }
size_t size() const { return map.size(); }
private:
std::unordered_map<std::string, std::string> map;
public:
decltype(map.cbegin()) begin() const { return map.cbegin(); }
decltype(map.cend()) end() const { return map.cend(); }
};
py::class_<StringMap>(m, "StringMap")
.def(py::init<>())
.def(py::init<std::unordered_map<std::string, std::string>>())
.def("__getitem__", [](const StringMap &map, std::string key) {
try { return map.get(key); }
catch (const std::out_of_range&) {
throw py::key_error("key '" + key + "' does not exist");
}
})
.def("__setitem__", &StringMap::set)
.def("__len__", &StringMap::size)
.def("__iter__", [](const StringMap &map) { return py::make_key_iterator(map.begin(), map.end()); },
py::keep_alive<0, 1>())
.def("items", [](const StringMap &map) { return py::make_iterator(map.begin(), map.end()); },
py::keep_alive<0, 1>())
;
// test_generalized_iterators
class IntPairs {
public:
IntPairs(std::vector<std::pair<int, int>> data) : data_(std::move(data)) {}
const std::pair<int, int>* begin() const { return data_.data(); }
private:
std::vector<std::pair<int, int>> data_;
};
py::class_<IntPairs>(m, "IntPairs")
.def(py::init<std::vector<std::pair<int, int>>>())
.def("nonzero", [](const IntPairs& s) {
return py::make_iterator(NonZeroIterator<std::pair<int, int>>(s.begin()), NonZeroSentinel());
}, py::keep_alive<0, 1>())
.def("nonzero_keys", [](const IntPairs& s) {
return py::make_key_iterator(NonZeroIterator<std::pair<int, int>>(s.begin()), NonZeroSentinel());
}, py::keep_alive<0, 1>())
;
#if 0
// Obsolete: special data structure for exposing custom iterator types to python
// kept here for illustrative purposes because there might be some use cases which
// are not covered by the much simpler py::make_iterator
struct PySequenceIterator {
PySequenceIterator(const Sequence &seq, py::object ref) : seq(seq), ref(ref) { }
float next() {
if (index == seq.size())
throw py::stop_iteration();
return seq[index++];
}
const Sequence &seq;
py::object ref; // keep a reference
size_t index = 0;
};
py::class_<PySequenceIterator>(seq, "Iterator")
.def("__iter__", [](PySequenceIterator &it) -> PySequenceIterator& { return it; })
.def("__next__", &PySequenceIterator::next);
On the actual Sequence object, the iterator would be constructed as follows:
.def("__iter__", [](py::object s) { return PySequenceIterator(s.cast<const Sequence &>(), s); })
#endif
// test_python_iterator_in_cpp
m.def("object_to_list", [](py::object o) {
auto l = py::list();
for (auto item : o) {
l.append(item);
}
return l;
});
m.def("iterator_to_list", [](py::iterator it) {
auto l = py::list();
while (it != py::iterator::sentinel()) {
l.append(*it);
++it;
}
return l;
});
// test_sequence_length: check that Python sequences can be converted to py::sequence.
m.def("sequence_length", [](py::sequence seq) { return seq.size(); });
// Make sure that py::iterator works with std algorithms
m.def("count_none", [](py::object o) {
return std::count_if(o.begin(), o.end(), [](py::handle h) { return h.is_none(); });
});
m.def("find_none", [](py::object o) {
auto it = std::find_if(o.begin(), o.end(), [](py::handle h) { return h.is_none(); });
return it->is_none();
});
m.def("count_nonzeros", [](py::dict d) {
return std::count_if(d.begin(), d.end(), [](std::pair<py::handle, py::handle> p) {
return p.second.cast<int>() != 0;
});
});
m.def("tuple_iterator", &test_random_access_iterator<py::tuple>);
m.def("list_iterator", &test_random_access_iterator<py::list>);
m.def("sequence_iterator", &test_random_access_iterator<py::sequence>);
// test_iterator_passthrough
// #181: iterator passthrough did not compile
m.def("iterator_passthrough", [](py::iterator s) -> py::iterator {
return py::make_iterator(std::begin(s), std::end(s));
});
// test_iterator_rvp
// #388: Can't make iterators via make_iterator() with different r/v policies
static std::vector<int> list = { 1, 2, 3 };
m.def("make_iterator_1", []() { return py::make_iterator<py::return_value_policy::copy>(list); });
m.def("make_iterator_2", []() { return py::make_iterator<py::return_value_policy::automatic>(list); });
}
|