File size: 6,852 Bytes
be11144
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
#include <unittest/unittest.h>
#include <thrust/unique.h>
#include <thrust/execution_policy.h>


template<typename ExecutionPolicy, typename Iterator1, typename Iterator2>
__global__
void unique_kernel(ExecutionPolicy exec, Iterator1 first, Iterator1 last, Iterator2 result)
{
  *result = thrust::unique(exec, first, last);
}


template<typename ExecutionPolicy, typename Iterator1, typename BinaryPredicate, typename Iterator2>
__global__
void unique_kernel(ExecutionPolicy exec, Iterator1 first, Iterator1 last, BinaryPredicate pred, Iterator2 result)
{
  *result = thrust::unique(exec, first, last, pred);
}


template<typename T>
struct is_equal_div_10_unique
{
  __host__ __device__
  bool operator()(const T x, const T& y) const { return ((int) x / 10) == ((int) y / 10); }
};


template<typename ExecutionPolicy>
void TestUniqueDevice(ExecutionPolicy exec)
{
  typedef thrust::device_vector<int> Vector;
  typedef Vector::value_type T;

  Vector data(10);
  data[0] = 11; 
  data[1] = 11; 
  data[2] = 12;
  data[3] = 20; 
  data[4] = 29; 
  data[5] = 21; 
  data[6] = 21; 
  data[7] = 31; 
  data[8] = 31; 
  data[9] = 37; 

  thrust::device_vector<Vector::iterator> new_last_vec(1);
  Vector::iterator new_last;
  
  unique_kernel<<<1,1>>>(exec, data.begin(), data.end(), new_last_vec.begin());
  {
    cudaError_t const err = cudaDeviceSynchronize();
    ASSERT_EQUAL(cudaSuccess, err);
  }

  new_last = new_last_vec[0];

  ASSERT_EQUAL(new_last - data.begin(), 7);
  ASSERT_EQUAL(data[0], 11);
  ASSERT_EQUAL(data[1], 12);
  ASSERT_EQUAL(data[2], 20);
  ASSERT_EQUAL(data[3], 29);
  ASSERT_EQUAL(data[4], 21);
  ASSERT_EQUAL(data[5], 31);
  ASSERT_EQUAL(data[6], 37);

  unique_kernel<<<1,1>>>(exec, data.begin(), new_last, is_equal_div_10_unique<T>(), new_last_vec.begin());
  {
    cudaError_t const err = cudaDeviceSynchronize();
    ASSERT_EQUAL(cudaSuccess, err);
  }

  new_last = new_last_vec[0];

  ASSERT_EQUAL(new_last - data.begin(), 3);
  ASSERT_EQUAL(data[0], 11);
  ASSERT_EQUAL(data[1], 20);
  ASSERT_EQUAL(data[2], 31);
}


void TestUniqueDeviceSeq()
{
  TestUniqueDevice(thrust::seq);
}
DECLARE_UNITTEST(TestUniqueDeviceSeq);


void TestUniqueDeviceDevice()
{
  TestUniqueDevice(thrust::device);
}
DECLARE_UNITTEST(TestUniqueDeviceDevice);


void TestUniqueCudaStreams()
{
  typedef thrust::device_vector<int> Vector;
  typedef Vector::value_type T;

  Vector data(10);
  data[0] = 11; 
  data[1] = 11; 
  data[2] = 12;
  data[3] = 20; 
  data[4] = 29; 
  data[5] = 21; 
  data[6] = 21; 
  data[7] = 31; 
  data[8] = 31; 
  data[9] = 37; 

  thrust::device_vector<Vector::iterator> new_last_vec(1);
  Vector::iterator new_last;

  cudaStream_t s;
  cudaStreamCreate(&s);
  
  new_last = thrust::unique(thrust::cuda::par.on(s), data.begin(), data.end());
  cudaStreamSynchronize(s);

  ASSERT_EQUAL(new_last - data.begin(), 7);
  ASSERT_EQUAL(data[0], 11);
  ASSERT_EQUAL(data[1], 12);
  ASSERT_EQUAL(data[2], 20);
  ASSERT_EQUAL(data[3], 29);
  ASSERT_EQUAL(data[4], 21);
  ASSERT_EQUAL(data[5], 31);
  ASSERT_EQUAL(data[6], 37);

  new_last = thrust::unique(thrust::cuda::par.on(s), data.begin(), new_last, is_equal_div_10_unique<T>());
  cudaStreamSynchronize(s);

  ASSERT_EQUAL(new_last - data.begin(), 3);
  ASSERT_EQUAL(data[0], 11);
  ASSERT_EQUAL(data[1], 20);
  ASSERT_EQUAL(data[2], 31);

  cudaStreamDestroy(s);
}
DECLARE_UNITTEST(TestUniqueCudaStreams);


template<typename ExecutionPolicy, typename Iterator1, typename Iterator2, typename Iterator3>
__global__
void unique_copy_kernel(ExecutionPolicy exec, Iterator1 first, Iterator1 last, Iterator2 result1, Iterator3 result2)
{
  *result2 = thrust::unique_copy(exec, first, last, result1);
}


template<typename ExecutionPolicy, typename Iterator1, typename Iterator2, typename BinaryPredicate, typename Iterator3>
__global__
void unique_copy_kernel(ExecutionPolicy exec, Iterator1 first, Iterator1 last, Iterator2 result1, BinaryPredicate pred, Iterator3 result2)
{
  *result2 = thrust::unique_copy(exec, first, last, result1, pred);
}


template<typename ExecutionPolicy>
void TestUniqueCopyDevice(ExecutionPolicy exec)
{
  typedef thrust::device_vector<int> Vector;
  typedef Vector::value_type T;

  Vector data(10);
  data[0] = 11; 
  data[1] = 11; 
  data[2] = 12;
  data[3] = 20; 
  data[4] = 29; 
  data[5] = 21; 
  data[6] = 21; 
  data[7] = 31; 
  data[8] = 31; 
  data[9] = 37; 
  
  Vector output(10, -1);

  thrust::device_vector<Vector::iterator> new_last_vec(1);
  Vector::iterator new_last;
  
  unique_copy_kernel<<<1,1>>>(exec, data.begin(), data.end(), output.begin(), new_last_vec.begin());
  {
    cudaError_t const err = cudaDeviceSynchronize();
    ASSERT_EQUAL(cudaSuccess, err);
  }

  new_last = new_last_vec[0];

  ASSERT_EQUAL(new_last - output.begin(), 7);
  ASSERT_EQUAL(output[0], 11);
  ASSERT_EQUAL(output[1], 12);
  ASSERT_EQUAL(output[2], 20);
  ASSERT_EQUAL(output[3], 29);
  ASSERT_EQUAL(output[4], 21);
  ASSERT_EQUAL(output[5], 31);
  ASSERT_EQUAL(output[6], 37);

  unique_copy_kernel<<<1,1>>>(exec, output.begin(), new_last, data.begin(), is_equal_div_10_unique<T>(), new_last_vec.begin());
  {
    cudaError_t const err = cudaDeviceSynchronize();
    ASSERT_EQUAL(cudaSuccess, err);
  }

  new_last = new_last_vec[0];

  ASSERT_EQUAL(new_last - data.begin(), 3);
  ASSERT_EQUAL(data[0], 11);
  ASSERT_EQUAL(data[1], 20);
  ASSERT_EQUAL(data[2], 31);
}


void TestUniqueCopyDeviceSeq()
{
  TestUniqueCopyDevice(thrust::seq);
}
DECLARE_UNITTEST(TestUniqueCopyDeviceSeq);


void TestUniqueCopyDeviceDevice()
{
  TestUniqueCopyDevice(thrust::device);
}
DECLARE_UNITTEST(TestUniqueCopyDeviceDevice);


void TestUniqueCopyCudaStreams()
{
  typedef thrust::device_vector<int> Vector;
  typedef Vector::value_type T;

  Vector data(10);
  data[0] = 11; 
  data[1] = 11; 
  data[2] = 12;
  data[3] = 20; 
  data[4] = 29; 
  data[5] = 21; 
  data[6] = 21; 
  data[7] = 31; 
  data[8] = 31; 
  data[9] = 37; 
  
  Vector output(10, -1);

  thrust::device_vector<Vector::iterator> new_last_vec(1);
  Vector::iterator new_last;

  cudaStream_t s;
  cudaStreamCreate(&s);
  
  new_last = thrust::unique_copy(thrust::cuda::par.on(s), data.begin(), data.end(), output.begin());
  cudaStreamSynchronize(s);

  ASSERT_EQUAL(new_last - output.begin(), 7);
  ASSERT_EQUAL(output[0], 11);
  ASSERT_EQUAL(output[1], 12);
  ASSERT_EQUAL(output[2], 20);
  ASSERT_EQUAL(output[3], 29);
  ASSERT_EQUAL(output[4], 21);
  ASSERT_EQUAL(output[5], 31);
  ASSERT_EQUAL(output[6], 37);

  new_last = thrust::unique_copy(thrust::cuda::par.on(s), output.begin(), new_last, data.begin(), is_equal_div_10_unique<T>());
  cudaStreamSynchronize(s);

  ASSERT_EQUAL(new_last - data.begin(), 3);
  ASSERT_EQUAL(data[0], 11);
  ASSERT_EQUAL(data[1], 20);
  ASSERT_EQUAL(data[2], 31);

  cudaStreamDestroy(s);
}
DECLARE_UNITTEST(TestUniqueCopyCudaStreams);