Spaces:
Runtime error
Runtime error
File size: 10,450 Bytes
be11144 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 |
#include <unittest/unittest.h>
#include <thrust/sequence.h>
#include <thrust/device_malloc_allocator.h>
template <class Vector>
struct TestVectorRangeInsertSimple
{
void operator()(size_t)
{
typedef typename Vector::value_type T;
Vector v1(5);
thrust::sequence(v1.begin(), v1.end());
// test when insertion range fits inside capacity
// and the size of the insertion is greater than the number
// of displaced elements
Vector v2(3);
v2.reserve(10);
thrust::sequence(v2.begin(), v2.end());
size_t new_size = v2.size() + v1.size();
size_t insertion_size = v1.end() - v1.begin();
size_t num_displaced = v2.end() - (v2.begin() + 1);
ASSERT_EQUAL(true, v2.capacity() >= new_size);
ASSERT_EQUAL(true, insertion_size > num_displaced);
v2.insert(v2.begin() + 1,
v1.begin(), v1.end());
ASSERT_EQUAL(T(0), v2[0]);
ASSERT_EQUAL(T(0), v2[1]);
ASSERT_EQUAL(T(1), v2[2]);
ASSERT_EQUAL(T(2), v2[3]);
ASSERT_EQUAL(T(3), v2[4]);
ASSERT_EQUAL(T(4), v2[5]);
ASSERT_EQUAL(T(1), v2[6]);
ASSERT_EQUAL(T(2), v2[7]);
ASSERT_EQUAL(8lu, v2.size());
ASSERT_EQUAL(10lu, v2.capacity());
// test when insertion range fits inside capacity
// and the size of the insertion is equal to the number
// of displaced elements
Vector v3(5);
v3.reserve(10);
thrust::sequence(v3.begin(), v3.end());
new_size = v3.size() + v1.size();
insertion_size = v1.end() - v1.begin();
num_displaced = v3.end() - v3.begin();
ASSERT_EQUAL(true, v3.capacity() >= new_size);
ASSERT_EQUAL(true, insertion_size == num_displaced);
v3.insert(v3.begin(),
v1.begin(), v1.end());
ASSERT_EQUAL(T(0), v3[0]);
ASSERT_EQUAL(T(1), v3[1]);
ASSERT_EQUAL(T(2), v3[2]);
ASSERT_EQUAL(T(3), v3[3]);
ASSERT_EQUAL(T(4), v3[4]);
ASSERT_EQUAL(T(0), v3[5]);
ASSERT_EQUAL(T(1), v3[6]);
ASSERT_EQUAL(T(2), v3[7]);
ASSERT_EQUAL(T(3), v3[8]);
ASSERT_EQUAL(T(4), v3[9]);
ASSERT_EQUAL(10lu, v3.size());
ASSERT_EQUAL(10lu, v3.capacity());
// test when insertion range fits inside capacity
// and the size of the insertion is less than the
// number of displaced elements
Vector v4(5);
v4.reserve(10);
thrust::sequence(v4.begin(), v4.end());
new_size = v4.size() + v1.size();
insertion_size = (v1.begin() + 3) - v1.begin();
num_displaced = v4.end() - (v4.begin() + 1);
ASSERT_EQUAL(true, v4.capacity() >= new_size);
ASSERT_EQUAL(true, insertion_size < num_displaced);
v4.insert(v4.begin() + 1,
v1.begin(), v1.begin() + 3);
ASSERT_EQUAL(T(0), v4[0]);
ASSERT_EQUAL(T(0), v4[1]);
ASSERT_EQUAL(T(1), v4[2]);
ASSERT_EQUAL(T(2), v4[3]);
ASSERT_EQUAL(T(1), v4[4]);
ASSERT_EQUAL(T(2), v4[5]);
ASSERT_EQUAL(T(3), v4[6]);
ASSERT_EQUAL(T(4), v4[7]);
ASSERT_EQUAL(8lu, v4.size());
ASSERT_EQUAL(10lu, v4.capacity());
// test when insertion range does not fit inside capacity
Vector v5(5);
thrust::sequence(v5.begin(), v5.end());
new_size = v5.size() + v1.size();
ASSERT_EQUAL(true, v5.capacity() < new_size);
v5.insert(v5.begin() + 1,
v1.begin(), v1.end());
ASSERT_EQUAL(T(0), v5[0]);
ASSERT_EQUAL(T(0), v5[1]);
ASSERT_EQUAL(T(1), v5[2]);
ASSERT_EQUAL(T(2), v5[3]);
ASSERT_EQUAL(T(3), v5[4]);
ASSERT_EQUAL(T(4), v5[5]);
ASSERT_EQUAL(T(1), v5[6]);
ASSERT_EQUAL(T(2), v5[7]);
ASSERT_EQUAL(T(3), v5[8]);
ASSERT_EQUAL(T(4), v5[9]);
ASSERT_EQUAL(10lu, v5.size());
}
}; // end TestVectorRangeInsertSimple
VectorUnitTest<TestVectorRangeInsertSimple, NumericTypes, thrust::device_vector, thrust::device_malloc_allocator> TestVectorRangeInsertSimpleDeviceInstance;
VectorUnitTest<TestVectorRangeInsertSimple, NumericTypes, thrust::host_vector, std::allocator> TestVectorRangeInsertSimpleHostInstance;
template <class T>
struct TestVectorRangeInsert
{
void operator()(size_t n)
{
thrust::host_vector<T> h_src = unittest::random_samples<T>(n + 3);
thrust::host_vector<T> h_dst = unittest::random_samples<T>(n);
thrust::device_vector<T> d_src = h_src;
thrust::device_vector<T> d_dst = h_dst;
// choose insertion range at random
size_t begin = n > 0 ? (size_t)h_src[n] % n : 0;
size_t end = n > 0 ? (size_t)h_src[n+1] % n : 0;
if(end < begin) thrust::swap(begin,end);
// choose insertion position at random
size_t position = n > 0 ? (size_t)h_src[n+2] % n : 0;
// insert on host
h_dst.insert(h_dst.begin() + position,
h_src.begin() + begin,
h_src.begin() + end);
// insert on device
d_dst.insert(d_dst.begin() + position,
d_src.begin() + begin,
d_src.begin() + end);
ASSERT_EQUAL(h_dst, d_dst);
}
}; // end TestVectorRangeInsert
VariableUnitTest<TestVectorRangeInsert, IntegralTypes> TestVectorRangeInsertInstance;
template <class Vector>
struct TestVectorFillInsertSimple
{
void operator()(size_t)
{
typedef typename Vector::value_type T;
// test when insertion range fits inside capacity
// and the size of the insertion is greater than the number
// of displaced elements
Vector v1(3);
v1.reserve(10);
thrust::sequence(v1.begin(), v1.end());
size_t insertion_size = 5;
size_t new_size = v1.size() + insertion_size;
size_t num_displaced = v1.end() - (v1.begin() + 1);
ASSERT_EQUAL(true, v1.capacity() >= new_size);
ASSERT_EQUAL(true, insertion_size > num_displaced);
v1.insert(v1.begin() + 1, insertion_size, 13);
ASSERT_EQUAL(T(0), v1[0]);
ASSERT_EQUAL(T(13), v1[1]);
ASSERT_EQUAL(T(13), v1[2]);
ASSERT_EQUAL(T(13), v1[3]);
ASSERT_EQUAL(T(13), v1[4]);
ASSERT_EQUAL(T(13), v1[5]);
ASSERT_EQUAL(T(1), v1[6]);
ASSERT_EQUAL(T(2), v1[7]);
ASSERT_EQUAL(8lu, v1.size());
ASSERT_EQUAL(10lu, v1.capacity());
// test when insertion range fits inside capacity
// and the size of the insertion is equal to the number
// of displaced elements
Vector v2(5);
v2.reserve(10);
thrust::sequence(v2.begin(), v2.end());
insertion_size = 5;
new_size = v2.size() + insertion_size;
num_displaced = v2.end() - v2.begin();
ASSERT_EQUAL(true, v2.capacity() >= new_size);
ASSERT_EQUAL(true, insertion_size == num_displaced);
v2.insert(v2.begin(), insertion_size, 13);
ASSERT_EQUAL(T(13), v2[0]);
ASSERT_EQUAL(T(13), v2[1]);
ASSERT_EQUAL(T(13), v2[2]);
ASSERT_EQUAL(T(13), v2[3]);
ASSERT_EQUAL(T(13), v2[4]);
ASSERT_EQUAL(T(0), v2[5]);
ASSERT_EQUAL(T(1), v2[6]);
ASSERT_EQUAL(T(2), v2[7]);
ASSERT_EQUAL(T(3), v2[8]);
ASSERT_EQUAL(T(4), v2[9]);
ASSERT_EQUAL(10lu, v2.size());
ASSERT_EQUAL(10lu, v2.capacity());
// test when insertion range fits inside capacity
// and the size of the insertion is less than the
// number of displaced elements
Vector v3(5);
v3.reserve(10);
thrust::sequence(v3.begin(), v3.end());
insertion_size = 3;
new_size = v3.size() + insertion_size;
num_displaced = v3.end() - (v3.begin() + 1);
ASSERT_EQUAL(true, v3.capacity() >= new_size);
ASSERT_EQUAL(true, insertion_size < num_displaced);
v3.insert(v3.begin() + 1, insertion_size, 13);
ASSERT_EQUAL(T(0), v3[0]);
ASSERT_EQUAL(T(13), v3[1]);
ASSERT_EQUAL(T(13), v3[2]);
ASSERT_EQUAL(T(13), v3[3]);
ASSERT_EQUAL(T(1), v3[4]);
ASSERT_EQUAL(T(2), v3[5]);
ASSERT_EQUAL(T(3), v3[6]);
ASSERT_EQUAL(T(4), v3[7]);
ASSERT_EQUAL(8lu, v3.size());
ASSERT_EQUAL(10lu, v3.capacity());
// test when insertion range does not fit inside capacity
Vector v4(5);
thrust::sequence(v4.begin(), v4.end());
insertion_size = 5;
new_size = v4.size() + insertion_size;
ASSERT_EQUAL(true, v4.capacity() < new_size);
v4.insert(v4.begin() + 1, insertion_size, 13);
ASSERT_EQUAL(T(0), v4[0]);
ASSERT_EQUAL(T(13), v4[1]);
ASSERT_EQUAL(T(13), v4[2]);
ASSERT_EQUAL(T(13), v4[3]);
ASSERT_EQUAL(T(13), v4[4]);
ASSERT_EQUAL(T(13), v4[5]);
ASSERT_EQUAL(T(1), v4[6]);
ASSERT_EQUAL(T(2), v4[7]);
ASSERT_EQUAL(T(3), v4[8]);
ASSERT_EQUAL(T(4), v4[9]);
ASSERT_EQUAL(10lu, v4.size());
}
}; // end TestVectorFillInsertSimple
VectorUnitTest<TestVectorFillInsertSimple, NumericTypes, thrust::device_vector, thrust::device_malloc_allocator> TestVectorFillInsertSimpleDeviceInstance;
VectorUnitTest<TestVectorFillInsertSimple, NumericTypes, thrust::host_vector, std::allocator> TestVectorFillInsertSimpleHostInstance;
template <class T>
struct TestVectorFillInsert
{
void operator()(size_t n)
{
thrust::host_vector<T> h_dst = unittest::random_samples<T>(n + 2);
thrust::device_vector<T> d_dst = h_dst;
// choose insertion position at random
size_t position = n > 0 ? (size_t)h_dst[n] % n : 0;
// choose insertion size at random
size_t insertion_size = n > 0 ? (size_t)h_dst[n] % n : 13;
// insert on host
h_dst.insert(h_dst.begin() + position,
insertion_size,
13);
// insert on device
d_dst.insert(d_dst.begin() + position,
insertion_size,
13);
ASSERT_EQUAL(h_dst, d_dst);
}
}; // end TestVectorFillInsert
VariableUnitTest<TestVectorFillInsert, IntegralTypes> TestVectorFillInsertInstance;
|