File size: 4,348 Bytes
be11144
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
#include <unittest/unittest.h>
#include <thrust/iterator/zip_iterator.h>
#include <thrust/scan.h>

#if THRUST_DEVICE_SYSTEM == THRUST_DEVICE_SYSTEM_CUDA
#include <unittest/cuda/testframework.h>
#endif

using namespace unittest;


template<typename Tuple>
struct TuplePlus
{
  __host__ __device__
  Tuple operator()(Tuple x, Tuple y) const
  {
    using namespace thrust;
    return make_tuple(get<0>(x) + get<0>(y),
                      get<1>(x) + get<1>(y));
  }
}; // end SumTuple


template <typename T>
struct TestZipIteratorScan
{
  void operator()(const size_t n)
  {
    using namespace thrust;

    host_vector<T> h_data0 = unittest::random_samples<T>(n);
    host_vector<T> h_data1 = unittest::random_samples<T>(n);

    device_vector<T> d_data0 = h_data0;
    device_vector<T> d_data1 = h_data1;

    typedef tuple<T,T> Tuple;

    host_vector<Tuple>   h_result(n);
    device_vector<Tuple> d_result(n);

    // The tests below get miscompiled on Tesla hw for 8b types

#if THRUST_DEVICE_SYSTEM == THRUST_DEVICE_SYSTEM_CUDA
    if(const CUDATestDriver *driver = dynamic_cast<const CUDATestDriver*>(&UnitTestDriver::s_driver()))
    {
      if(sizeof(T) == sizeof(unittest::uint8_t) && driver->current_device_architecture() < 200)
      {
        KNOWN_FAILURE;
      } // end if
    } // end if
#endif

    // inclusive_scan (tuple output)
    inclusive_scan( make_zip_iterator(make_tuple(h_data0.begin(), h_data1.begin())),
                    make_zip_iterator(make_tuple(h_data0.end(),   h_data1.end())),
                    h_result.begin(),
                    TuplePlus<Tuple>());
    inclusive_scan( make_zip_iterator(make_tuple(d_data0.begin(), d_data1.begin())),
                    make_zip_iterator(make_tuple(d_data0.end(),   d_data1.end())),
                    d_result.begin(),
                    TuplePlus<Tuple>());
    ASSERT_EQUAL_QUIET(h_result, d_result);
   
    // exclusive_scan (tuple output)
    exclusive_scan( make_zip_iterator(make_tuple(h_data0.begin(), h_data1.begin())),
                    make_zip_iterator(make_tuple(h_data0.end(),   h_data1.end())),
                    h_result.begin(),
                    make_tuple<T,T>(0,0),
                    TuplePlus<Tuple>());
    exclusive_scan( make_zip_iterator(make_tuple(d_data0.begin(), d_data1.begin())),
                    make_zip_iterator(make_tuple(d_data0.end(),   d_data1.end())),
                    d_result.begin(),
                    make_tuple<T,T>(0,0),
                    TuplePlus<Tuple>());
    ASSERT_EQUAL_QUIET(h_result, d_result);

    host_vector<T>   h_result0(n);
    host_vector<T>   h_result1(n);
    device_vector<T> d_result0(n);
    device_vector<T> d_result1(n);
    
    // inclusive_scan (zip_iterator output)
    inclusive_scan( make_zip_iterator(make_tuple(h_data0.begin(), h_data1.begin())),
                    make_zip_iterator(make_tuple(h_data0.end(),   h_data1.end())),
                    make_zip_iterator(make_tuple(h_result0.begin(), h_result1.begin())),
                    TuplePlus<Tuple>());
    inclusive_scan( make_zip_iterator(make_tuple(d_data0.begin(), d_data1.begin())),
                    make_zip_iterator(make_tuple(d_data0.end(),   d_data1.end())),
                    make_zip_iterator(make_tuple(d_result0.begin(), d_result1.begin())),
                    TuplePlus<Tuple>());
    ASSERT_EQUAL_QUIET(h_result0, d_result0);
    ASSERT_EQUAL_QUIET(h_result1, d_result1);
    
    // exclusive_scan (zip_iterator output)
    exclusive_scan( make_zip_iterator(make_tuple(h_data0.begin(), h_data1.begin())),
                    make_zip_iterator(make_tuple(h_data0.end(),   h_data1.end())),
                    make_zip_iterator(make_tuple(h_result0.begin(), h_result1.begin())),
                    make_tuple<T,T>(0,0),
                    TuplePlus<Tuple>());
    exclusive_scan( make_zip_iterator(make_tuple(d_data0.begin(), d_data1.begin())),
                    make_zip_iterator(make_tuple(d_data0.end(),   d_data1.end())),
                    make_zip_iterator(make_tuple(d_result0.begin(), d_result1.begin())),
                    make_tuple<T,T>(0,0),
                    TuplePlus<Tuple>());
    ASSERT_EQUAL_QUIET(h_result0, d_result0);
    ASSERT_EQUAL_QUIET(h_result1, d_result1);
  }
};
VariableUnitTest<TestZipIteratorScan, SignedIntegralTypes> TestZipIteratorScanInstance;