Spaces:
				
			
			
	
			
			
		Runtime error
		
	
	
	
			
			
	
	
	
	
		
		
		Runtime error
		
	| /****************************************************************************** | |
| * Copyright (c) 2011, Duane Merrill. All rights reserved. | |
| * Copyright (c) 2011-2018, NVIDIA CORPORATION. All rights reserved. | |
| * | |
| * Redistribution and use in source and binary forms, with or without | |
| * modification, are permitted provided that the following conditions are met: | |
| * * Redistributions of source code must retain the above copyright | |
| * notice, this list of conditions and the following disclaimer. | |
| * * Redistributions in binary form must reproduce the above copyright | |
| * notice, this list of conditions and the following disclaimer in the | |
| * documentation and/or other materials provided with the distribution. | |
| * * Neither the name of the NVIDIA CORPORATION nor the | |
| * names of its contributors may be used to endorse or promote products | |
| * derived from this software without specific prior written permission. | |
| * | |
| * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND | |
| * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED | |
| * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE | |
| * DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY | |
| * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES | |
| * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | |
| * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND | |
| * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | |
| * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS | |
| * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | |
| * | |
| ******************************************************************************/ | |
| /** | |
| * \file | |
| * cub::DeviceSelect provides device-wide, parallel operations for compacting selected items from sequences of data items residing within device-accessible memory. | |
| */ | |
| #pragma once | |
| #include <stdio.h> | |
| #include <iterator> | |
| #include "dispatch/dispatch_select_if.cuh" | |
| #include "../config.cuh" | |
| /// Optional outer namespace(s) | |
| CUB_NS_PREFIX | |
| /// CUB namespace | |
| namespace cub { | |
| /** | |
| * \brief DeviceSelect provides device-wide, parallel operations for compacting selected items from sequences of data items residing within device-accessible memory.  | |
| * \ingroup SingleModule | |
| * | |
| * \par Overview | |
| * These operations apply a selection criterion to selectively copy | |
| * items from a specified input sequence to a compact output sequence. | |
| * | |
| * \par Usage Considerations | |
| * \cdp_class{DeviceSelect} | |
| * | |
| * \par Performance | |
| * \linear_performance{select-flagged, select-if, and select-unique} | |
| * | |
| * \par | |
| * The following chart illustrates DeviceSelect::If | |
| * performance across different CUDA architectures for \p int32 items, | |
| * where 50% of the items are randomly selected. | |
| * | |
| * \image html select_if_int32_50_percent.png | |
| * | |
| * \par | |
| * The following chart illustrates DeviceSelect::Unique | |
| * performance across different CUDA architectures for \p int32 items | |
| * where segments have lengths uniformly sampled from [1,1000]. | |
| * | |
| * \image html select_unique_int32_len_500.png | |
| * | |
| * \par | |
| * \plots_below | |
| * | |
| */ | |
| struct DeviceSelect | |
| { | |
| /** | |
| * \brief Uses the \p d_flags sequence to selectively copy the corresponding items from \p d_in into \p d_out. The total number of items selected is written to \p d_num_selected_out.  | |
| * | |
| * \par | |
| * - The value type of \p d_flags must be castable to \p bool (e.g., \p bool, \p char, \p int, etc.). | |
| * - Copies of the selected items are compacted into \p d_out and maintain their original relative ordering. | |
| * - \devicestorage | |
| * | |
| * \par Snippet | |
| * The code snippet below illustrates the compaction of items selected from an \p int device vector. | |
| * \par | |
| * \code | |
| * #include <cub/cub.cuh> // or equivalently <cub/device/device_select.cuh> | |
| * | |
| * // Declare, allocate, and initialize device-accessible pointers for input, flags, and output | |
| * int num_items; // e.g., 8 | |
| * int *d_in; // e.g., [1, 2, 3, 4, 5, 6, 7, 8] | |
| * char *d_flags; // e.g., [1, 0, 0, 1, 0, 1, 1, 0] | |
| * int *d_out; // e.g., [ , , , , , , , ] | |
| * int *d_num_selected_out; // e.g., [ ] | |
| * ... | |
| * | |
| * // Determine temporary device storage requirements | |
| * void *d_temp_storage = NULL; | |
| * size_t temp_storage_bytes = 0; | |
| * cub::DeviceSelect::Flagged(d_temp_storage, temp_storage_bytes, d_in, d_flags, d_out, d_num_selected_out, num_items); | |
| * | |
| * // Allocate temporary storage | |
| * cudaMalloc(&d_temp_storage, temp_storage_bytes); | |
| * | |
| * // Run selection | |
| * cub::DeviceSelect::Flagged(d_temp_storage, temp_storage_bytes, d_in, d_flags, d_out, d_num_selected_out, num_items); | |
| * | |
| * // d_out <-- [1, 4, 6, 7] | |
| * // d_num_selected_out <-- [4] | |
| * | |
| * \endcode | |
| * | |
| * \tparam InputIteratorT <b>[inferred]</b> Random-access input iterator type for reading input items \iterator | |
| * \tparam FlagIterator <b>[inferred]</b> Random-access input iterator type for reading selection flags \iterator | |
| * \tparam OutputIteratorT <b>[inferred]</b> Random-access output iterator type for writing selected items \iterator | |
| * \tparam NumSelectedIteratorT <b>[inferred]</b> Output iterator type for recording the number of items selected \iterator | |
| */ | |
| template < | |
| typename InputIteratorT, | |
| typename FlagIterator, | |
| typename OutputIteratorT, | |
| typename NumSelectedIteratorT> | |
| CUB_RUNTIME_FUNCTION __forceinline__ | |
| static cudaError_t Flagged( | |
| void* d_temp_storage, ///< [in] %Device-accessible allocation of temporary storage. When NULL, the required allocation size is written to \p temp_storage_bytes and no work is done. | |
| size_t &temp_storage_bytes, ///< [in,out] Reference to size in bytes of \p d_temp_storage allocation | |
| InputIteratorT d_in, ///< [in] Pointer to the input sequence of data items | |
| FlagIterator d_flags, ///< [in] Pointer to the input sequence of selection flags | |
| OutputIteratorT d_out, ///< [out] Pointer to the output sequence of selected data items | |
| NumSelectedIteratorT d_num_selected_out, ///< [out] Pointer to the output total number of items selected (i.e., length of \p d_out) | |
| int num_items, ///< [in] Total number of input items (i.e., length of \p d_in) | |
| cudaStream_t stream = 0, ///< [in] <b>[optional]</b> CUDA stream to launch kernels within. Default is stream<sub>0</sub>. | |
| bool debug_synchronous = false) ///< [in] <b>[optional]</b> Whether or not to synchronize the stream after every kernel launch to check for errors. May cause significant slowdown. Default is \p false. | |
| { | |
| typedef int OffsetT; // Signed integer type for global offsets | |
| typedef NullType SelectOp; // Selection op (not used) | |
| typedef NullType EqualityOp; // Equality operator (not used) | |
| return DispatchSelectIf<InputIteratorT, FlagIterator, OutputIteratorT, NumSelectedIteratorT, SelectOp, EqualityOp, OffsetT, false>::Dispatch( | |
| d_temp_storage, | |
| temp_storage_bytes, | |
| d_in, | |
| d_flags, | |
| d_out, | |
| d_num_selected_out, | |
| SelectOp(), | |
| EqualityOp(), | |
| num_items, | |
| stream, | |
| debug_synchronous); | |
| } | |
| /** | |
| * \brief Uses the \p select_op functor to selectively copy items from \p d_in into \p d_out. The total number of items selected is written to \p d_num_selected_out.  | |
| * | |
| * \par | |
| * - Copies of the selected items are compacted into \p d_out and maintain their original relative ordering. | |
| * - \devicestorage | |
| * | |
| * \par Performance | |
| * The following charts illustrate saturated select-if performance across different | |
| * CUDA architectures for \p int32 and \p int64 items, respectively. Items are | |
| * selected with 50% probability. | |
| * | |
| * \image html select_if_int32_50_percent.png | |
| * \image html select_if_int64_50_percent.png | |
| * | |
| * \par | |
| * The following charts are similar, but 5% selection probability: | |
| * | |
| * \image html select_if_int32_5_percent.png | |
| * \image html select_if_int64_5_percent.png | |
| * | |
| * \par Snippet | |
| * The code snippet below illustrates the compaction of items selected from an \p int device vector. | |
| * \par | |
| * \code | |
| * #include <cub/cub.cuh> // or equivalently <cub/device/device_select.cuh> | |
| * | |
| * // Functor type for selecting values less than some criteria | |
| * struct LessThan | |
| * { | |
| * int compare; | |
| * | |
| * CUB_RUNTIME_FUNCTION __forceinline__ | |
| * LessThan(int compare) : compare(compare) {} | |
| * | |
| * CUB_RUNTIME_FUNCTION __forceinline__ | |
| * bool operator()(const int &a) const { | |
| * return (a < compare); | |
| * } | |
| * }; | |
| * | |
| * // Declare, allocate, and initialize device-accessible pointers for input and output | |
| * int num_items; // e.g., 8 | |
| * int *d_in; // e.g., [0, 2, 3, 9, 5, 2, 81, 8] | |
| * int *d_out; // e.g., [ , , , , , , , ] | |
| * int *d_num_selected_out; // e.g., [ ] | |
| * LessThan select_op(7); | |
| * ... | |
| * | |
| * // Determine temporary device storage requirements | |
| * void *d_temp_storage = NULL; | |
| * size_t temp_storage_bytes = 0; | |
| * cub::DeviceSelect::If(d_temp_storage, temp_storage_bytes, d_in, d_out, d_num_selected_out, num_items, select_op); | |
| * | |
| * // Allocate temporary storage | |
| * cudaMalloc(&d_temp_storage, temp_storage_bytes); | |
| * | |
| * // Run selection | |
| * cub::DeviceSelect::If(d_temp_storage, temp_storage_bytes, d_in, d_out, d_num_selected_out, num_items, select_op); | |
| * | |
| * // d_out <-- [0, 2, 3, 5, 2] | |
| * // d_num_selected_out <-- [5] | |
| * | |
| * \endcode | |
| * | |
| * \tparam InputIteratorT <b>[inferred]</b> Random-access input iterator type for reading input items \iterator | |
| * \tparam OutputIteratorT <b>[inferred]</b> Random-access output iterator type for writing selected items \iterator | |
| * \tparam NumSelectedIteratorT <b>[inferred]</b> Output iterator type for recording the number of items selected \iterator | |
| * \tparam SelectOp <b>[inferred]</b> Selection operator type having member <tt>bool operator()(const T &a)</tt> | |
| */ | |
| template < | |
| typename InputIteratorT, | |
| typename OutputIteratorT, | |
| typename NumSelectedIteratorT, | |
| typename SelectOp> | |
| CUB_RUNTIME_FUNCTION __forceinline__ | |
| static cudaError_t If( | |
| void* d_temp_storage, ///< [in] %Device-accessible allocation of temporary storage. When NULL, the required allocation size is written to \p temp_storage_bytes and no work is done. | |
| size_t &temp_storage_bytes, ///< [in,out] Reference to size in bytes of \p d_temp_storage allocation | |
| InputIteratorT d_in, ///< [in] Pointer to the input sequence of data items | |
| OutputIteratorT d_out, ///< [out] Pointer to the output sequence of selected data items | |
| NumSelectedIteratorT d_num_selected_out, ///< [out] Pointer to the output total number of items selected (i.e., length of \p d_out) | |
| int num_items, ///< [in] Total number of input items (i.e., length of \p d_in) | |
| SelectOp select_op, ///< [in] Unary selection operator | |
| cudaStream_t stream = 0, ///< [in] <b>[optional]</b> CUDA stream to launch kernels within. Default is stream<sub>0</sub>. | |
| bool debug_synchronous = false) ///< [in] <b>[optional]</b> Whether or not to synchronize the stream after every kernel launch to check for errors. May cause significant slowdown. Default is \p false. | |
| { | |
| typedef int OffsetT; // Signed integer type for global offsets | |
| typedef NullType* FlagIterator; // FlagT iterator type (not used) | |
| typedef NullType EqualityOp; // Equality operator (not used) | |
| return DispatchSelectIf<InputIteratorT, FlagIterator, OutputIteratorT, NumSelectedIteratorT, SelectOp, EqualityOp, OffsetT, false>::Dispatch( | |
| d_temp_storage, | |
| temp_storage_bytes, | |
| d_in, | |
| NULL, | |
| d_out, | |
| d_num_selected_out, | |
| select_op, | |
| EqualityOp(), | |
| num_items, | |
| stream, | |
| debug_synchronous); | |
| } | |
| /** | |
| * \brief Given an input sequence \p d_in having runs of consecutive equal-valued keys, only the first key from each run is selectively copied to \p d_out. The total number of items selected is written to \p d_num_selected_out.  | |
| * | |
| * \par | |
| * - The <tt>==</tt> equality operator is used to determine whether keys are equivalent | |
| * - Copies of the selected items are compacted into \p d_out and maintain their original relative ordering. | |
| * - \devicestorage | |
| * | |
| * \par Performance | |
| * The following charts illustrate saturated select-unique performance across different | |
| * CUDA architectures for \p int32 and \p int64 items, respectively. Segments have | |
| * lengths uniformly sampled from [1,1000]. | |
| * | |
| * \image html select_unique_int32_len_500.png | |
| * \image html select_unique_int64_len_500.png | |
| * | |
| * \par | |
| * The following charts are similar, but with segment lengths uniformly sampled from [1,10]: | |
| * | |
| * \image html select_unique_int32_len_5.png | |
| * \image html select_unique_int64_len_5.png | |
| * | |
| * \par Snippet | |
| * The code snippet below illustrates the compaction of items selected from an \p int device vector. | |
| * \par | |
| * \code | |
| * #include <cub/cub.cuh> // or equivalently <cub/device/device_select.cuh> | |
| * | |
| * // Declare, allocate, and initialize device-accessible pointers for input and output | |
| * int num_items; // e.g., 8 | |
| * int *d_in; // e.g., [0, 2, 2, 9, 5, 5, 5, 8] | |
| * int *d_out; // e.g., [ , , , , , , , ] | |
| * int *d_num_selected_out; // e.g., [ ] | |
| * ... | |
| * | |
| * // Determine temporary device storage requirements | |
| * void *d_temp_storage = NULL; | |
| * size_t temp_storage_bytes = 0; | |
| * cub::DeviceSelect::Unique(d_temp_storage, temp_storage_bytes, d_in, d_out, d_num_selected_out, num_items); | |
| * | |
| * // Allocate temporary storage | |
| * cudaMalloc(&d_temp_storage, temp_storage_bytes); | |
| * | |
| * // Run selection | |
| * cub::DeviceSelect::Unique(d_temp_storage, temp_storage_bytes, d_in, d_out, d_num_selected_out, num_items); | |
| * | |
| * // d_out <-- [0, 2, 9, 5, 8] | |
| * // d_num_selected_out <-- [5] | |
| * | |
| * \endcode | |
| * | |
| * \tparam InputIteratorT <b>[inferred]</b> Random-access input iterator type for reading input items \iterator | |
| * \tparam OutputIteratorT <b>[inferred]</b> Random-access output iterator type for writing selected items \iterator | |
| * \tparam NumSelectedIteratorT <b>[inferred]</b> Output iterator type for recording the number of items selected \iterator | |
| */ | |
| template < | |
| typename InputIteratorT, | |
| typename OutputIteratorT, | |
| typename NumSelectedIteratorT> | |
| CUB_RUNTIME_FUNCTION __forceinline__ | |
| static cudaError_t Unique( | |
| void* d_temp_storage, ///< [in] %Device-accessible allocation of temporary storage. When NULL, the required allocation size is written to \p temp_storage_bytes and no work is done. | |
| size_t &temp_storage_bytes, ///< [in,out] Reference to size in bytes of \p d_temp_storage allocation | |
| InputIteratorT d_in, ///< [in] Pointer to the input sequence of data items | |
| OutputIteratorT d_out, ///< [out] Pointer to the output sequence of selected data items | |
| NumSelectedIteratorT d_num_selected_out, ///< [out] Pointer to the output total number of items selected (i.e., length of \p d_out) | |
| int num_items, ///< [in] Total number of input items (i.e., length of \p d_in) | |
| cudaStream_t stream = 0, ///< [in] <b>[optional]</b> CUDA stream to launch kernels within. Default is stream<sub>0</sub>. | |
| bool debug_synchronous = false) ///< [in] <b>[optional]</b> Whether or not to synchronize the stream after every kernel launch to check for errors. May cause significant slowdown. Default is \p false. | |
| { | |
| typedef int OffsetT; // Signed integer type for global offsets | |
| typedef NullType* FlagIterator; // FlagT iterator type (not used) | |
| typedef NullType SelectOp; // Selection op (not used) | |
| typedef Equality EqualityOp; // Default == operator | |
| return DispatchSelectIf<InputIteratorT, FlagIterator, OutputIteratorT, NumSelectedIteratorT, SelectOp, EqualityOp, OffsetT, false>::Dispatch( | |
| d_temp_storage, | |
| temp_storage_bytes, | |
| d_in, | |
| NULL, | |
| d_out, | |
| d_num_selected_out, | |
| SelectOp(), | |
| EqualityOp(), | |
| num_items, | |
| stream, | |
| debug_synchronous); | |
| } | |
| }; | |
| /** | |
| * \example example_device_select_flagged.cu | |
| * \example example_device_select_if.cu | |
| * \example example_device_select_unique.cu | |
| */ | |
| } // CUB namespace | |
| CUB_NS_POSTFIX // Optional outer namespace(s) | |
