ma4389's picture
Update app.py
4106559 verified
raw
history blame
781 Bytes
import torch
from diffusers import DiffusionPipeline
import gradio as gr
# Load model with float16 for GPU or float32 for CPU
dtype = torch.float16 if torch.cuda.is_available() else torch.float32
device = "cuda" if torch.cuda.is_available() else "cpu"
pipe = DiffusionPipeline.from_pretrained(
"CompVis/stable-diffusion-v1-4", torch_dtype=dtype
)
pipe.load_lora_weights("EliKet/train_text_to_img")
pipe.to(device)
def generate_image(prompt):
image = pipe(prompt).images[0]
return image
demo = gr.Interface(
fn=generate_image,
inputs=gr.Textbox(placeholder="Enter your image prompt here..."),
outputs="image",
title="Text-to-Image Generator (Lynx)",
description="Type a prompt like 'a lynx in the snowy forest, ultra-detailed'."
)
demo.launch()