Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -2,26 +2,33 @@ import torch
|
|
2 |
from diffusers import DiffusionPipeline
|
3 |
import gradio as gr
|
4 |
|
5 |
-
#
|
6 |
-
dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
7 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
8 |
|
|
|
9 |
pipe = DiffusionPipeline.from_pretrained(
|
10 |
-
"CompVis/stable-diffusion-v1-4",
|
|
|
11 |
)
|
12 |
-
pipe.load_lora_weights("EliKet/train_text_to_img")
|
13 |
pipe.to(device)
|
14 |
|
|
|
|
|
|
|
|
|
15 |
def generate_image(prompt):
|
16 |
image = pipe(prompt).images[0]
|
17 |
return image
|
18 |
|
|
|
19 |
demo = gr.Interface(
|
20 |
fn=generate_image,
|
21 |
-
inputs=gr.Textbox(placeholder="
|
22 |
outputs="image",
|
23 |
-
title="Text-to-Image Generator
|
24 |
-
description="
|
25 |
)
|
26 |
|
|
|
27 |
demo.launch()
|
|
|
2 |
from diffusers import DiffusionPipeline
|
3 |
import gradio as gr
|
4 |
|
5 |
+
# Detect device
|
|
|
6 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
7 |
+
dtype = torch.float16 if device == "cuda" else torch.float32
|
8 |
|
9 |
+
# Load pipeline
|
10 |
pipe = DiffusionPipeline.from_pretrained(
|
11 |
+
"CompVis/stable-diffusion-v1-4",
|
12 |
+
torch_dtype=dtype
|
13 |
)
|
|
|
14 |
pipe.to(device)
|
15 |
|
16 |
+
# Load LoRA weights (requires `peft` installed)
|
17 |
+
pipe.load_lora_weights("EliKet/train_text_to_img")
|
18 |
+
|
19 |
+
# Inference function
|
20 |
def generate_image(prompt):
|
21 |
image = pipe(prompt).images[0]
|
22 |
return image
|
23 |
|
24 |
+
# Gradio Interface
|
25 |
demo = gr.Interface(
|
26 |
fn=generate_image,
|
27 |
+
inputs=gr.Textbox(lines=2, placeholder="Describe the image you want..."),
|
28 |
outputs="image",
|
29 |
+
title="🖼️ LoRA Text-to-Image Generator",
|
30 |
+
description="Enter a prompt to generate an image using Stable Diffusion with LoRA (EliKet/train_text_to_img)."
|
31 |
)
|
32 |
|
33 |
+
# Launch app
|
34 |
demo.launch()
|