import torch from diffusers import DiffusionPipeline import gradio as gr # Detect device device = "cuda" if torch.cuda.is_available() else "cpu" dtype = torch.float16 if device == "cuda" else torch.float32 # Load pipeline pipe = DiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4", torch_dtype=dtype ) pipe.to(device) # Load LoRA weights (requires `peft` installed) pipe.load_lora_weights("EliKet/train_text_to_img") # Inference function def generate_image(prompt): image = pipe(prompt).images[0] return image # Gradio Interface demo = gr.Interface( fn=generate_image, inputs=gr.Textbox(lines=2, placeholder="Describe the image you want..."), outputs="image", title="🖼️ LoRA Text-to-Image Generator", description="Enter a prompt to generate an image using Stable Diffusion with LoRA (EliKet/train_text_to_img)." ) # Launch app demo.launch()