Spaces:
Sleeping
Sleeping
Create utils.py
Browse files- tsr/utils.py +474 -0
tsr/utils.py
ADDED
@@ -0,0 +1,474 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import importlib
|
2 |
+
import math
|
3 |
+
from collections import defaultdict
|
4 |
+
from dataclasses import dataclass
|
5 |
+
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
|
6 |
+
|
7 |
+
import imageio
|
8 |
+
import numpy as np
|
9 |
+
import PIL.Image
|
10 |
+
import rembg
|
11 |
+
import torch
|
12 |
+
import torch.nn as nn
|
13 |
+
import torch.nn.functional as F
|
14 |
+
import trimesh
|
15 |
+
from omegaconf import DictConfig, OmegaConf
|
16 |
+
from PIL import Image
|
17 |
+
|
18 |
+
|
19 |
+
def parse_structured(fields: Any, cfg: Optional[Union[dict, DictConfig]] = None) -> Any:
|
20 |
+
scfg = OmegaConf.merge(OmegaConf.structured(fields), cfg)
|
21 |
+
return scfg
|
22 |
+
|
23 |
+
|
24 |
+
def find_class(cls_string):
|
25 |
+
module_string = ".".join(cls_string.split(".")[:-1])
|
26 |
+
cls_name = cls_string.split(".")[-1]
|
27 |
+
module = importlib.import_module(module_string, package=None)
|
28 |
+
cls = getattr(module, cls_name)
|
29 |
+
return cls
|
30 |
+
|
31 |
+
|
32 |
+
def get_intrinsic_from_fov(fov, H, W, bs=-1):
|
33 |
+
focal_length = 0.5 * H / np.tan(0.5 * fov)
|
34 |
+
intrinsic = np.identity(3, dtype=np.float32)
|
35 |
+
intrinsic[0, 0] = focal_length
|
36 |
+
intrinsic[1, 1] = focal_length
|
37 |
+
intrinsic[0, 2] = W / 2.0
|
38 |
+
intrinsic[1, 2] = H / 2.0
|
39 |
+
|
40 |
+
if bs > 0:
|
41 |
+
intrinsic = intrinsic[None].repeat(bs, axis=0)
|
42 |
+
|
43 |
+
return torch.from_numpy(intrinsic)
|
44 |
+
|
45 |
+
|
46 |
+
class BaseModule(nn.Module):
|
47 |
+
@dataclass
|
48 |
+
class Config:
|
49 |
+
pass
|
50 |
+
|
51 |
+
cfg: Config # add this to every subclass of BaseModule to enable static type checking
|
52 |
+
|
53 |
+
def __init__(
|
54 |
+
self, cfg: Optional[Union[dict, DictConfig]] = None, *args, **kwargs
|
55 |
+
) -> None:
|
56 |
+
super().__init__()
|
57 |
+
self.cfg = parse_structured(self.Config, cfg)
|
58 |
+
self.configure(*args, **kwargs)
|
59 |
+
|
60 |
+
def configure(self, *args, **kwargs) -> None:
|
61 |
+
raise NotImplementedError
|
62 |
+
|
63 |
+
|
64 |
+
class ImagePreprocessor:
|
65 |
+
def convert_and_resize(
|
66 |
+
self,
|
67 |
+
image: Union[PIL.Image.Image, np.ndarray, torch.Tensor],
|
68 |
+
size: int,
|
69 |
+
):
|
70 |
+
if isinstance(image, PIL.Image.Image):
|
71 |
+
image = torch.from_numpy(np.array(image).astype(np.float32) / 255.0)
|
72 |
+
elif isinstance(image, np.ndarray):
|
73 |
+
if image.dtype == np.uint8:
|
74 |
+
image = torch.from_numpy(image.astype(np.float32) / 255.0)
|
75 |
+
else:
|
76 |
+
image = torch.from_numpy(image)
|
77 |
+
elif isinstance(image, torch.Tensor):
|
78 |
+
pass
|
79 |
+
|
80 |
+
batched = image.ndim == 4
|
81 |
+
|
82 |
+
if not batched:
|
83 |
+
image = image[None, ...]
|
84 |
+
image = F.interpolate(
|
85 |
+
image.permute(0, 3, 1, 2),
|
86 |
+
(size, size),
|
87 |
+
mode="bilinear",
|
88 |
+
align_corners=False,
|
89 |
+
antialias=True,
|
90 |
+
).permute(0, 2, 3, 1)
|
91 |
+
if not batched:
|
92 |
+
image = image[0]
|
93 |
+
return image
|
94 |
+
|
95 |
+
def __call__(
|
96 |
+
self,
|
97 |
+
image: Union[
|
98 |
+
PIL.Image.Image,
|
99 |
+
np.ndarray,
|
100 |
+
torch.FloatTensor,
|
101 |
+
List[PIL.Image.Image],
|
102 |
+
List[np.ndarray],
|
103 |
+
List[torch.FloatTensor],
|
104 |
+
],
|
105 |
+
size: int,
|
106 |
+
) -> Any:
|
107 |
+
if isinstance(image, (np.ndarray, torch.FloatTensor)) and image.ndim == 4:
|
108 |
+
image = self.convert_and_resize(image, size)
|
109 |
+
else:
|
110 |
+
if not isinstance(image, list):
|
111 |
+
image = [image]
|
112 |
+
image = [self.convert_and_resize(im, size) for im in image]
|
113 |
+
image = torch.stack(image, dim=0)
|
114 |
+
return image
|
115 |
+
|
116 |
+
|
117 |
+
def rays_intersect_bbox(
|
118 |
+
rays_o: torch.Tensor,
|
119 |
+
rays_d: torch.Tensor,
|
120 |
+
radius: float,
|
121 |
+
near: float = 0.0,
|
122 |
+
valid_thresh: float = 0.01,
|
123 |
+
):
|
124 |
+
input_shape = rays_o.shape[:-1]
|
125 |
+
rays_o, rays_d = rays_o.view(-1, 3), rays_d.view(-1, 3)
|
126 |
+
rays_d_valid = torch.where(
|
127 |
+
rays_d.abs() < 1e-6, torch.full_like(rays_d, 1e-6), rays_d
|
128 |
+
)
|
129 |
+
if type(radius) in [int, float]:
|
130 |
+
radius = torch.FloatTensor(
|
131 |
+
[[-radius, radius], [-radius, radius], [-radius, radius]]
|
132 |
+
).to(rays_o.device)
|
133 |
+
radius = (
|
134 |
+
1.0 - 1.0e-3
|
135 |
+
) * radius # tighten the radius to make sure the intersection point lies in the bounding box
|
136 |
+
interx0 = (radius[..., 1] - rays_o) / rays_d_valid
|
137 |
+
interx1 = (radius[..., 0] - rays_o) / rays_d_valid
|
138 |
+
t_near = torch.minimum(interx0, interx1).amax(dim=-1).clamp_min(near)
|
139 |
+
t_far = torch.maximum(interx0, interx1).amin(dim=-1)
|
140 |
+
|
141 |
+
# check wheter a ray intersects the bbox or not
|
142 |
+
rays_valid = t_far - t_near > valid_thresh
|
143 |
+
|
144 |
+
t_near[torch.where(~rays_valid)] = 0.0
|
145 |
+
t_far[torch.where(~rays_valid)] = 0.0
|
146 |
+
|
147 |
+
t_near = t_near.view(*input_shape, 1)
|
148 |
+
t_far = t_far.view(*input_shape, 1)
|
149 |
+
rays_valid = rays_valid.view(*input_shape)
|
150 |
+
|
151 |
+
return t_near, t_far, rays_valid
|
152 |
+
|
153 |
+
|
154 |
+
def chunk_batch(func: Callable, chunk_size: int, *args, **kwargs) -> Any:
|
155 |
+
if chunk_size <= 0:
|
156 |
+
return func(*args, **kwargs)
|
157 |
+
B = None
|
158 |
+
for arg in list(args) + list(kwargs.values()):
|
159 |
+
if isinstance(arg, torch.Tensor):
|
160 |
+
B = arg.shape[0]
|
161 |
+
break
|
162 |
+
assert (
|
163 |
+
B is not None
|
164 |
+
), "No tensor found in args or kwargs, cannot determine batch size."
|
165 |
+
out = defaultdict(list)
|
166 |
+
out_type = None
|
167 |
+
# max(1, B) to support B == 0
|
168 |
+
for i in range(0, max(1, B), chunk_size):
|
169 |
+
out_chunk = func(
|
170 |
+
*[
|
171 |
+
arg[i : i + chunk_size] if isinstance(arg, torch.Tensor) else arg
|
172 |
+
for arg in args
|
173 |
+
],
|
174 |
+
**{
|
175 |
+
k: arg[i : i + chunk_size] if isinstance(arg, torch.Tensor) else arg
|
176 |
+
for k, arg in kwargs.items()
|
177 |
+
},
|
178 |
+
)
|
179 |
+
if out_chunk is None:
|
180 |
+
continue
|
181 |
+
out_type = type(out_chunk)
|
182 |
+
if isinstance(out_chunk, torch.Tensor):
|
183 |
+
out_chunk = {0: out_chunk}
|
184 |
+
elif isinstance(out_chunk, tuple) or isinstance(out_chunk, list):
|
185 |
+
chunk_length = len(out_chunk)
|
186 |
+
out_chunk = {i: chunk for i, chunk in enumerate(out_chunk)}
|
187 |
+
elif isinstance(out_chunk, dict):
|
188 |
+
pass
|
189 |
+
else:
|
190 |
+
print(
|
191 |
+
f"Return value of func must be in type [torch.Tensor, list, tuple, dict], get {type(out_chunk)}."
|
192 |
+
)
|
193 |
+
exit(1)
|
194 |
+
for k, v in out_chunk.items():
|
195 |
+
v = v if torch.is_grad_enabled() else v.detach()
|
196 |
+
out[k].append(v)
|
197 |
+
|
198 |
+
if out_type is None:
|
199 |
+
return None
|
200 |
+
|
201 |
+
out_merged: Dict[Any, Optional[torch.Tensor]] = {}
|
202 |
+
for k, v in out.items():
|
203 |
+
if all([vv is None for vv in v]):
|
204 |
+
# allow None in return value
|
205 |
+
out_merged[k] = None
|
206 |
+
elif all([isinstance(vv, torch.Tensor) for vv in v]):
|
207 |
+
out_merged[k] = torch.cat(v, dim=0)
|
208 |
+
else:
|
209 |
+
raise TypeError(
|
210 |
+
f"Unsupported types in return value of func: {[type(vv) for vv in v if not isinstance(vv, torch.Tensor)]}"
|
211 |
+
)
|
212 |
+
|
213 |
+
if out_type is torch.Tensor:
|
214 |
+
return out_merged[0]
|
215 |
+
elif out_type in [tuple, list]:
|
216 |
+
return out_type([out_merged[i] for i in range(chunk_length)])
|
217 |
+
elif out_type is dict:
|
218 |
+
return out_merged
|
219 |
+
|
220 |
+
|
221 |
+
ValidScale = Union[Tuple[float, float], torch.FloatTensor]
|
222 |
+
|
223 |
+
|
224 |
+
def scale_tensor(dat: torch.FloatTensor, inp_scale: ValidScale, tgt_scale: ValidScale):
|
225 |
+
if inp_scale is None:
|
226 |
+
inp_scale = (0, 1)
|
227 |
+
if tgt_scale is None:
|
228 |
+
tgt_scale = (0, 1)
|
229 |
+
if isinstance(tgt_scale, torch.FloatTensor):
|
230 |
+
assert dat.shape[-1] == tgt_scale.shape[-1]
|
231 |
+
dat = (dat - inp_scale[0]) / (inp_scale[1] - inp_scale[0])
|
232 |
+
dat = dat * (tgt_scale[1] - tgt_scale[0]) + tgt_scale[0]
|
233 |
+
return dat
|
234 |
+
|
235 |
+
|
236 |
+
def get_activation(name) -> Callable:
|
237 |
+
if name is None:
|
238 |
+
return lambda x: x
|
239 |
+
name = name.lower()
|
240 |
+
if name == "none":
|
241 |
+
return lambda x: x
|
242 |
+
elif name == "exp":
|
243 |
+
return lambda x: torch.exp(x)
|
244 |
+
elif name == "sigmoid":
|
245 |
+
return lambda x: torch.sigmoid(x)
|
246 |
+
elif name == "tanh":
|
247 |
+
return lambda x: torch.tanh(x)
|
248 |
+
elif name == "softplus":
|
249 |
+
return lambda x: F.softplus(x)
|
250 |
+
else:
|
251 |
+
try:
|
252 |
+
return getattr(F, name)
|
253 |
+
except AttributeError:
|
254 |
+
raise ValueError(f"Unknown activation function: {name}")
|
255 |
+
|
256 |
+
|
257 |
+
def get_ray_directions(
|
258 |
+
H: int,
|
259 |
+
W: int,
|
260 |
+
focal: Union[float, Tuple[float, float]],
|
261 |
+
principal: Optional[Tuple[float, float]] = None,
|
262 |
+
use_pixel_centers: bool = True,
|
263 |
+
normalize: bool = True,
|
264 |
+
) -> torch.FloatTensor:
|
265 |
+
"""
|
266 |
+
Get ray directions for all pixels in camera coordinate.
|
267 |
+
Reference: https://www.scratchapixel.com/lessons/3d-basic-rendering/
|
268 |
+
ray-tracing-generating-camera-rays/standard-coordinate-systems
|
269 |
+
|
270 |
+
Inputs:
|
271 |
+
H, W, focal, principal, use_pixel_centers: image height, width, focal length, principal point and whether use pixel centers
|
272 |
+
Outputs:
|
273 |
+
directions: (H, W, 3), the direction of the rays in camera coordinate
|
274 |
+
"""
|
275 |
+
pixel_center = 0.5 if use_pixel_centers else 0
|
276 |
+
|
277 |
+
if isinstance(focal, float):
|
278 |
+
fx, fy = focal, focal
|
279 |
+
cx, cy = W / 2, H / 2
|
280 |
+
else:
|
281 |
+
fx, fy = focal
|
282 |
+
assert principal is not None
|
283 |
+
cx, cy = principal
|
284 |
+
|
285 |
+
i, j = torch.meshgrid(
|
286 |
+
torch.arange(W, dtype=torch.float32) + pixel_center,
|
287 |
+
torch.arange(H, dtype=torch.float32) + pixel_center,
|
288 |
+
indexing="xy",
|
289 |
+
)
|
290 |
+
|
291 |
+
directions = torch.stack([(i - cx) / fx, -(j - cy) / fy, -torch.ones_like(i)], -1)
|
292 |
+
|
293 |
+
if normalize:
|
294 |
+
directions = F.normalize(directions, dim=-1)
|
295 |
+
|
296 |
+
return directions
|
297 |
+
|
298 |
+
|
299 |
+
def get_rays(
|
300 |
+
directions,
|
301 |
+
c2w,
|
302 |
+
keepdim=False,
|
303 |
+
normalize=False,
|
304 |
+
) -> Tuple[torch.FloatTensor, torch.FloatTensor]:
|
305 |
+
# Rotate ray directions from camera coordinate to the world coordinate
|
306 |
+
assert directions.shape[-1] == 3
|
307 |
+
|
308 |
+
if directions.ndim == 2: # (N_rays, 3)
|
309 |
+
if c2w.ndim == 2: # (4, 4)
|
310 |
+
c2w = c2w[None, :, :]
|
311 |
+
assert c2w.ndim == 3 # (N_rays, 4, 4) or (1, 4, 4)
|
312 |
+
rays_d = (directions[:, None, :] * c2w[:, :3, :3]).sum(-1) # (N_rays, 3)
|
313 |
+
rays_o = c2w[:, :3, 3].expand(rays_d.shape)
|
314 |
+
elif directions.ndim == 3: # (H, W, 3)
|
315 |
+
assert c2w.ndim in [2, 3]
|
316 |
+
if c2w.ndim == 2: # (4, 4)
|
317 |
+
rays_d = (directions[:, :, None, :] * c2w[None, None, :3, :3]).sum(
|
318 |
+
-1
|
319 |
+
) # (H, W, 3)
|
320 |
+
rays_o = c2w[None, None, :3, 3].expand(rays_d.shape)
|
321 |
+
elif c2w.ndim == 3: # (B, 4, 4)
|
322 |
+
rays_d = (directions[None, :, :, None, :] * c2w[:, None, None, :3, :3]).sum(
|
323 |
+
-1
|
324 |
+
) # (B, H, W, 3)
|
325 |
+
rays_o = c2w[:, None, None, :3, 3].expand(rays_d.shape)
|
326 |
+
elif directions.ndim == 4: # (B, H, W, 3)
|
327 |
+
assert c2w.ndim == 3 # (B, 4, 4)
|
328 |
+
rays_d = (directions[:, :, :, None, :] * c2w[:, None, None, :3, :3]).sum(
|
329 |
+
-1
|
330 |
+
) # (B, H, W, 3)
|
331 |
+
rays_o = c2w[:, None, None, :3, 3].expand(rays_d.shape)
|
332 |
+
|
333 |
+
if normalize:
|
334 |
+
rays_d = F.normalize(rays_d, dim=-1)
|
335 |
+
if not keepdim:
|
336 |
+
rays_o, rays_d = rays_o.reshape(-1, 3), rays_d.reshape(-1, 3)
|
337 |
+
|
338 |
+
return rays_o, rays_d
|
339 |
+
|
340 |
+
|
341 |
+
def get_spherical_cameras(
|
342 |
+
n_views: int,
|
343 |
+
elevation_deg: float,
|
344 |
+
camera_distance: float,
|
345 |
+
fovy_deg: float,
|
346 |
+
height: int,
|
347 |
+
width: int,
|
348 |
+
):
|
349 |
+
azimuth_deg = torch.linspace(0, 360.0, n_views + 1)[:n_views]
|
350 |
+
elevation_deg = torch.full_like(azimuth_deg, elevation_deg)
|
351 |
+
camera_distances = torch.full_like(elevation_deg, camera_distance)
|
352 |
+
|
353 |
+
elevation = elevation_deg * math.pi / 180
|
354 |
+
azimuth = azimuth_deg * math.pi / 180
|
355 |
+
|
356 |
+
# convert spherical coordinates to cartesian coordinates
|
357 |
+
# right hand coordinate system, x back, y right, z up
|
358 |
+
# elevation in (-90, 90), azimuth from +x to +y in (-180, 180)
|
359 |
+
camera_positions = torch.stack(
|
360 |
+
[
|
361 |
+
camera_distances * torch.cos(elevation) * torch.cos(azimuth),
|
362 |
+
camera_distances * torch.cos(elevation) * torch.sin(azimuth),
|
363 |
+
camera_distances * torch.sin(elevation),
|
364 |
+
],
|
365 |
+
dim=-1,
|
366 |
+
)
|
367 |
+
|
368 |
+
# default scene center at origin
|
369 |
+
center = torch.zeros_like(camera_positions)
|
370 |
+
# default camera up direction as +z
|
371 |
+
up = torch.as_tensor([0, 0, 1], dtype=torch.float32)[None, :].repeat(n_views, 1)
|
372 |
+
|
373 |
+
fovy = torch.full_like(elevation_deg, fovy_deg) * math.pi / 180
|
374 |
+
|
375 |
+
lookat = F.normalize(center - camera_positions, dim=-1)
|
376 |
+
right = F.normalize(torch.cross(lookat, up), dim=-1)
|
377 |
+
up = F.normalize(torch.cross(right, lookat), dim=-1)
|
378 |
+
c2w3x4 = torch.cat(
|
379 |
+
[torch.stack([right, up, -lookat], dim=-1), camera_positions[:, :, None]],
|
380 |
+
dim=-1,
|
381 |
+
)
|
382 |
+
c2w = torch.cat([c2w3x4, torch.zeros_like(c2w3x4[:, :1])], dim=1)
|
383 |
+
c2w[:, 3, 3] = 1.0
|
384 |
+
|
385 |
+
# get directions by dividing directions_unit_focal by focal length
|
386 |
+
focal_length = 0.5 * height / torch.tan(0.5 * fovy)
|
387 |
+
directions_unit_focal = get_ray_directions(
|
388 |
+
H=height,
|
389 |
+
W=width,
|
390 |
+
focal=1.0,
|
391 |
+
)
|
392 |
+
directions = directions_unit_focal[None, :, :, :].repeat(n_views, 1, 1, 1)
|
393 |
+
directions[:, :, :, :2] = (
|
394 |
+
directions[:, :, :, :2] / focal_length[:, None, None, None]
|
395 |
+
)
|
396 |
+
# must use normalize=True to normalize directions here
|
397 |
+
rays_o, rays_d = get_rays(directions, c2w, keepdim=True, normalize=True)
|
398 |
+
|
399 |
+
return rays_o, rays_d
|
400 |
+
|
401 |
+
|
402 |
+
def remove_background(
|
403 |
+
image: PIL.Image.Image,
|
404 |
+
rembg_session: Any = None,
|
405 |
+
force: bool = False,
|
406 |
+
**rembg_kwargs,
|
407 |
+
) -> PIL.Image.Image:
|
408 |
+
do_remove = True
|
409 |
+
if image.mode == "RGBA" and image.getextrema()[3][0] < 255:
|
410 |
+
do_remove = False
|
411 |
+
do_remove = do_remove or force
|
412 |
+
if do_remove:
|
413 |
+
image = rembg.remove(image, session=rembg_session, **rembg_kwargs)
|
414 |
+
return image
|
415 |
+
|
416 |
+
|
417 |
+
def resize_foreground(
|
418 |
+
image: PIL.Image.Image,
|
419 |
+
ratio: float,
|
420 |
+
) -> PIL.Image.Image:
|
421 |
+
image = np.array(image)
|
422 |
+
assert image.shape[-1] == 4
|
423 |
+
alpha = np.where(image[..., 3] > 0)
|
424 |
+
y1, y2, x1, x2 = (
|
425 |
+
alpha[0].min(),
|
426 |
+
alpha[0].max(),
|
427 |
+
alpha[1].min(),
|
428 |
+
alpha[1].max(),
|
429 |
+
)
|
430 |
+
# crop the foreground
|
431 |
+
fg = image[y1:y2, x1:x2]
|
432 |
+
# pad to square
|
433 |
+
size = max(fg.shape[0], fg.shape[1])
|
434 |
+
ph0, pw0 = (size - fg.shape[0]) // 2, (size - fg.shape[1]) // 2
|
435 |
+
ph1, pw1 = size - fg.shape[0] - ph0, size - fg.shape[1] - pw0
|
436 |
+
new_image = np.pad(
|
437 |
+
fg,
|
438 |
+
((ph0, ph1), (pw0, pw1), (0, 0)),
|
439 |
+
mode="constant",
|
440 |
+
constant_values=((0, 0), (0, 0), (0, 0)),
|
441 |
+
)
|
442 |
+
|
443 |
+
# compute padding according to the ratio
|
444 |
+
new_size = int(new_image.shape[0] / ratio)
|
445 |
+
# pad to size, double side
|
446 |
+
ph0, pw0 = (new_size - size) // 2, (new_size - size) // 2
|
447 |
+
ph1, pw1 = new_size - size - ph0, new_size - size - pw0
|
448 |
+
new_image = np.pad(
|
449 |
+
new_image,
|
450 |
+
((ph0, ph1), (pw0, pw1), (0, 0)),
|
451 |
+
mode="constant",
|
452 |
+
constant_values=((0, 0), (0, 0), (0, 0)),
|
453 |
+
)
|
454 |
+
new_image = PIL.Image.fromarray(new_image)
|
455 |
+
return new_image
|
456 |
+
|
457 |
+
|
458 |
+
def save_video(
|
459 |
+
frames: List[PIL.Image.Image],
|
460 |
+
output_path: str,
|
461 |
+
fps: int = 30,
|
462 |
+
):
|
463 |
+
# use imageio to save video
|
464 |
+
frames = [np.array(frame) for frame in frames]
|
465 |
+
writer = imageio.get_writer(output_path, fps=fps)
|
466 |
+
for frame in frames:
|
467 |
+
writer.append_data(frame)
|
468 |
+
writer.close()
|
469 |
+
|
470 |
+
|
471 |
+
def to_gradio_3d_orientation(mesh):
|
472 |
+
mesh.apply_transform(trimesh.transformations.rotation_matrix(-np.pi/2, [1, 0, 0]))
|
473 |
+
mesh.apply_transform(trimesh.transformations.rotation_matrix(np.pi/2, [0, 1, 0]))
|
474 |
+
return mesh
|