Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -15,7 +15,6 @@ from diffusers import ShapEImg2ImgPipeline
|
|
15 |
from diffusers.utils import export_to_obj
|
16 |
from huggingface_hub import snapshot_download
|
17 |
from flask_cors import CORS
|
18 |
-
import signal
|
19 |
import functools
|
20 |
|
21 |
app = Flask(__name__)
|
@@ -51,29 +50,41 @@ model_loading = False
|
|
51 |
# Configuration for processing
|
52 |
TIMEOUT_SECONDS = 300 # 5 minutes max for processing
|
53 |
MAX_DIMENSION = 512 # Max image dimension to process
|
|
|
54 |
|
55 |
-
#
|
56 |
class TimeoutError(Exception):
|
57 |
pass
|
58 |
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
|
78 |
def allowed_file(filename):
|
79 |
return '.' in filename and filename.rsplit('.', 1)[1].lower() in ALLOWED_EXTENSIONS
|
@@ -223,7 +234,7 @@ def convert_image_to_3d():
|
|
223 |
# Get optional parameters with defaults
|
224 |
try:
|
225 |
guidance_scale = float(request.form.get('guidance_scale', 3.0))
|
226 |
-
num_inference_steps = int(request.form.get('num_inference_steps', 64))
|
227 |
output_format = request.form.get('output_format', 'obj').lower()
|
228 |
except ValueError:
|
229 |
return jsonify({"error": "Invalid parameter values"}), 400
|
@@ -232,8 +243,8 @@ def convert_image_to_3d():
|
|
232 |
if guidance_scale < 1.0 or guidance_scale > 5.0:
|
233 |
return jsonify({"error": "Guidance scale must be between 1.0 and 5.0"}), 400
|
234 |
|
235 |
-
if num_inference_steps < 32 or num_inference_steps >
|
236 |
-
|
237 |
|
238 |
# Validate output format
|
239 |
if output_format not in ['obj', 'glb']:
|
@@ -260,21 +271,6 @@ def convert_image_to_3d():
|
|
260 |
'created_at': time.time()
|
261 |
}
|
262 |
|
263 |
-
# Process function with timeout
|
264 |
-
@with_timeout(TIMEOUT_SECONDS)
|
265 |
-
def process_with_timeout(image, steps, scale, format):
|
266 |
-
# Load model
|
267 |
-
pipe = load_model()
|
268 |
-
processing_jobs[job_id]['progress'] = 30
|
269 |
-
|
270 |
-
# Generate 3D model
|
271 |
-
return pipe(
|
272 |
-
image,
|
273 |
-
guidance_scale=scale,
|
274 |
-
num_inference_steps=steps,
|
275 |
-
output_type="mesh",
|
276 |
-
).images
|
277 |
-
|
278 |
# Start processing in a separate thread
|
279 |
def process_image():
|
280 |
thread = threading.current_thread()
|
@@ -286,50 +282,87 @@ def convert_image_to_3d():
|
|
286 |
image = preprocess_image(filepath)
|
287 |
processing_jobs[job_id]['progress'] = 10
|
288 |
|
289 |
-
#
|
290 |
try:
|
291 |
-
|
292 |
-
processing_jobs[job_id]['progress'] =
|
293 |
-
except
|
294 |
processing_jobs[job_id]['status'] = 'error'
|
295 |
-
processing_jobs[job_id]['error'] = f"
|
296 |
return
|
297 |
|
298 |
-
#
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
-
mtl_path = os.path.join(output_dir, "model.mtl")
|
308 |
-
if os.path.exists(mtl_path):
|
309 |
-
zipf.write(mtl_path, arcname="model.mtl")
|
310 |
-
|
311 |
-
processing_jobs[job_id]['result_url'] = f"/download/{job_id}"
|
312 |
-
processing_jobs[job_id]['preview_url'] = f"/preview/{job_id}"
|
313 |
-
|
314 |
-
elif output_format == 'glb':
|
315 |
-
from trimesh import Trimesh
|
316 |
-
mesh = images[0]
|
317 |
-
vertices = mesh.verts
|
318 |
-
faces = mesh.faces
|
319 |
-
|
320 |
-
# Create a trimesh object
|
321 |
-
trimesh_obj = Trimesh(vertices=vertices, faces=faces)
|
322 |
|
323 |
-
|
324 |
-
glb_path = os.path.join(output_dir, "model.glb")
|
325 |
-
trimesh_obj.export(glb_path)
|
326 |
|
327 |
-
|
328 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
329 |
|
330 |
-
#
|
331 |
-
|
332 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
333 |
|
334 |
# Clean up temporary file
|
335 |
if os.path.exists(filepath):
|
|
|
15 |
from diffusers.utils import export_to_obj
|
16 |
from huggingface_hub import snapshot_download
|
17 |
from flask_cors import CORS
|
|
|
18 |
import functools
|
19 |
|
20 |
app = Flask(__name__)
|
|
|
50 |
# Configuration for processing
|
51 |
TIMEOUT_SECONDS = 300 # 5 minutes max for processing
|
52 |
MAX_DIMENSION = 512 # Max image dimension to process
|
53 |
+
MAX_INFERENCE_STEPS = 64 # Maximum allowed inference steps to prevent the index error
|
54 |
|
55 |
+
# TimeoutError for handling timeouts
|
56 |
class TimeoutError(Exception):
|
57 |
pass
|
58 |
|
59 |
+
# Thread-safe timeout implementation
|
60 |
+
def process_with_timeout(function, args, timeout):
|
61 |
+
result = [None]
|
62 |
+
error = [None]
|
63 |
+
completed = [False]
|
64 |
+
|
65 |
+
def target():
|
66 |
+
try:
|
67 |
+
result[0] = function(*args)
|
68 |
+
completed[0] = True
|
69 |
+
except Exception as e:
|
70 |
+
error[0] = e
|
71 |
+
|
72 |
+
thread = threading.Thread(target=target)
|
73 |
+
thread.daemon = True
|
74 |
+
thread.start()
|
75 |
+
|
76 |
+
thread.join(timeout)
|
77 |
+
|
78 |
+
if not completed[0]:
|
79 |
+
if thread.is_alive():
|
80 |
+
return None, TimeoutError(f"Processing timed out after {timeout} seconds")
|
81 |
+
elif error[0]:
|
82 |
+
return None, error[0]
|
83 |
+
|
84 |
+
if error[0]:
|
85 |
+
return None, error[0]
|
86 |
+
|
87 |
+
return result[0], None
|
88 |
|
89 |
def allowed_file(filename):
|
90 |
return '.' in filename and filename.rsplit('.', 1)[1].lower() in ALLOWED_EXTENSIONS
|
|
|
234 |
# Get optional parameters with defaults
|
235 |
try:
|
236 |
guidance_scale = float(request.form.get('guidance_scale', 3.0))
|
237 |
+
num_inference_steps = min(int(request.form.get('num_inference_steps', 64)), MAX_INFERENCE_STEPS)
|
238 |
output_format = request.form.get('output_format', 'obj').lower()
|
239 |
except ValueError:
|
240 |
return jsonify({"error": "Invalid parameter values"}), 400
|
|
|
243 |
if guidance_scale < 1.0 or guidance_scale > 5.0:
|
244 |
return jsonify({"error": "Guidance scale must be between 1.0 and 5.0"}), 400
|
245 |
|
246 |
+
if num_inference_steps < 32 or num_inference_steps > MAX_INFERENCE_STEPS:
|
247 |
+
num_inference_steps = min(num_inference_steps, MAX_INFERENCE_STEPS)
|
248 |
|
249 |
# Validate output format
|
250 |
if output_format not in ['obj', 'glb']:
|
|
|
271 |
'created_at': time.time()
|
272 |
}
|
273 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
274 |
# Start processing in a separate thread
|
275 |
def process_image():
|
276 |
thread = threading.current_thread()
|
|
|
282 |
image = preprocess_image(filepath)
|
283 |
processing_jobs[job_id]['progress'] = 10
|
284 |
|
285 |
+
# Load model
|
286 |
try:
|
287 |
+
pipe = load_model()
|
288 |
+
processing_jobs[job_id]['progress'] = 30
|
289 |
+
except Exception as e:
|
290 |
processing_jobs[job_id]['status'] = 'error'
|
291 |
+
processing_jobs[job_id]['error'] = f"Error loading model: {str(e)}"
|
292 |
return
|
293 |
|
294 |
+
# Process image with thread-safe timeout
|
295 |
+
try:
|
296 |
+
def generate_mesh():
|
297 |
+
return pipe(
|
298 |
+
image,
|
299 |
+
guidance_scale=guidance_scale,
|
300 |
+
num_inference_steps=num_inference_steps,
|
301 |
+
output_type="mesh",
|
302 |
+
).images
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
303 |
|
304 |
+
images, error = process_with_timeout(generate_mesh, [], TIMEOUT_SECONDS)
|
|
|
|
|
305 |
|
306 |
+
if error:
|
307 |
+
if isinstance(error, TimeoutError):
|
308 |
+
processing_jobs[job_id]['status'] = 'error'
|
309 |
+
processing_jobs[job_id]['error'] = f"Processing timed out after {TIMEOUT_SECONDS} seconds"
|
310 |
+
return
|
311 |
+
else:
|
312 |
+
raise error
|
313 |
+
|
314 |
+
processing_jobs[job_id]['progress'] = 80
|
315 |
+
except Exception as e:
|
316 |
+
error_details = traceback.format_exc()
|
317 |
+
processing_jobs[job_id]['status'] = 'error'
|
318 |
+
processing_jobs[job_id]['error'] = f"Error during processing: {str(e)}"
|
319 |
+
print(f"Error processing job {job_id}: {str(e)}")
|
320 |
+
print(error_details)
|
321 |
+
return
|
322 |
|
323 |
+
# Export based on requested format
|
324 |
+
try:
|
325 |
+
if output_format == 'obj':
|
326 |
+
obj_path = os.path.join(output_dir, "model.obj")
|
327 |
+
export_to_obj(images[0], obj_path)
|
328 |
+
|
329 |
+
# Create a zip file with OBJ and MTL
|
330 |
+
zip_path = os.path.join(output_dir, "model.zip")
|
331 |
+
with zipfile.ZipFile(zip_path, 'w') as zipf:
|
332 |
+
zipf.write(obj_path, arcname="model.obj")
|
333 |
+
mtl_path = os.path.join(output_dir, "model.mtl")
|
334 |
+
if os.path.exists(mtl_path):
|
335 |
+
zipf.write(mtl_path, arcname="model.mtl")
|
336 |
+
|
337 |
+
processing_jobs[job_id]['result_url'] = f"/download/{job_id}"
|
338 |
+
processing_jobs[job_id]['preview_url'] = f"/preview/{job_id}"
|
339 |
+
|
340 |
+
elif output_format == 'glb':
|
341 |
+
from trimesh import Trimesh
|
342 |
+
mesh = images[0]
|
343 |
+
vertices = mesh.verts
|
344 |
+
faces = mesh.faces
|
345 |
+
|
346 |
+
# Create a trimesh object
|
347 |
+
trimesh_obj = Trimesh(vertices=vertices, faces=faces)
|
348 |
+
|
349 |
+
# Export as GLB
|
350 |
+
glb_path = os.path.join(output_dir, "model.glb")
|
351 |
+
trimesh_obj.export(glb_path)
|
352 |
+
|
353 |
+
processing_jobs[job_id]['result_url'] = f"/download/{job_id}"
|
354 |
+
processing_jobs[job_id]['preview_url'] = f"/preview/{job_id}"
|
355 |
+
|
356 |
+
# Update job status
|
357 |
+
processing_jobs[job_id]['status'] = 'completed'
|
358 |
+
processing_jobs[job_id]['progress'] = 100
|
359 |
+
print(f"Job {job_id} completed successfully")
|
360 |
+
except Exception as e:
|
361 |
+
error_details = traceback.format_exc()
|
362 |
+
processing_jobs[job_id]['status'] = 'error'
|
363 |
+
processing_jobs[job_id]['error'] = f"Error exporting model: {str(e)}"
|
364 |
+
print(f"Error exporting model for job {job_id}: {str(e)}")
|
365 |
+
print(error_details)
|
366 |
|
367 |
# Clean up temporary file
|
368 |
if os.path.exists(filepath):
|