Spaces:
Sleeping
Sleeping
Create transformer/attention.py
Browse files
tsr/models/transformer/attention.py
ADDED
|
@@ -0,0 +1,653 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
| 2 |
+
#
|
| 3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# you may not use this file except in compliance with the License.
|
| 5 |
+
# You may obtain a copy of the License at
|
| 6 |
+
#
|
| 7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
#
|
| 9 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# See the License for the specific language governing permissions and
|
| 13 |
+
# limitations under the License.
|
| 14 |
+
#
|
| 15 |
+
# --------
|
| 16 |
+
#
|
| 17 |
+
# Modified 2024 by the Tripo AI and Stability AI Team.
|
| 18 |
+
#
|
| 19 |
+
# Copyright (c) 2024 Tripo AI & Stability AI
|
| 20 |
+
#
|
| 21 |
+
# Permission is hereby granted, free of charge, to any person obtaining a copy
|
| 22 |
+
# of this software and associated documentation files (the "Software"), to deal
|
| 23 |
+
# in the Software without restriction, including without limitation the rights
|
| 24 |
+
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
| 25 |
+
# copies of the Software, and to permit persons to whom the Software is
|
| 26 |
+
# furnished to do so, subject to the following conditions:
|
| 27 |
+
#
|
| 28 |
+
# The above copyright notice and this permission notice shall be included in all
|
| 29 |
+
# copies or substantial portions of the Software.
|
| 30 |
+
#
|
| 31 |
+
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
| 32 |
+
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
| 33 |
+
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
| 34 |
+
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
| 35 |
+
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
| 36 |
+
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
| 37 |
+
# SOFTWARE.
|
| 38 |
+
|
| 39 |
+
from typing import Optional
|
| 40 |
+
|
| 41 |
+
import torch
|
| 42 |
+
import torch.nn.functional as F
|
| 43 |
+
from torch import nn
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
class Attention(nn.Module):
|
| 47 |
+
r"""
|
| 48 |
+
A cross attention layer.
|
| 49 |
+
|
| 50 |
+
Parameters:
|
| 51 |
+
query_dim (`int`):
|
| 52 |
+
The number of channels in the query.
|
| 53 |
+
cross_attention_dim (`int`, *optional*):
|
| 54 |
+
The number of channels in the encoder_hidden_states. If not given, defaults to `query_dim`.
|
| 55 |
+
heads (`int`, *optional*, defaults to 8):
|
| 56 |
+
The number of heads to use for multi-head attention.
|
| 57 |
+
dim_head (`int`, *optional*, defaults to 64):
|
| 58 |
+
The number of channels in each head.
|
| 59 |
+
dropout (`float`, *optional*, defaults to 0.0):
|
| 60 |
+
The dropout probability to use.
|
| 61 |
+
bias (`bool`, *optional*, defaults to False):
|
| 62 |
+
Set to `True` for the query, key, and value linear layers to contain a bias parameter.
|
| 63 |
+
upcast_attention (`bool`, *optional*, defaults to False):
|
| 64 |
+
Set to `True` to upcast the attention computation to `float32`.
|
| 65 |
+
upcast_softmax (`bool`, *optional*, defaults to False):
|
| 66 |
+
Set to `True` to upcast the softmax computation to `float32`.
|
| 67 |
+
cross_attention_norm (`str`, *optional*, defaults to `None`):
|
| 68 |
+
The type of normalization to use for the cross attention. Can be `None`, `layer_norm`, or `group_norm`.
|
| 69 |
+
cross_attention_norm_num_groups (`int`, *optional*, defaults to 32):
|
| 70 |
+
The number of groups to use for the group norm in the cross attention.
|
| 71 |
+
added_kv_proj_dim (`int`, *optional*, defaults to `None`):
|
| 72 |
+
The number of channels to use for the added key and value projections. If `None`, no projection is used.
|
| 73 |
+
norm_num_groups (`int`, *optional*, defaults to `None`):
|
| 74 |
+
The number of groups to use for the group norm in the attention.
|
| 75 |
+
spatial_norm_dim (`int`, *optional*, defaults to `None`):
|
| 76 |
+
The number of channels to use for the spatial normalization.
|
| 77 |
+
out_bias (`bool`, *optional*, defaults to `True`):
|
| 78 |
+
Set to `True` to use a bias in the output linear layer.
|
| 79 |
+
scale_qk (`bool`, *optional*, defaults to `True`):
|
| 80 |
+
Set to `True` to scale the query and key by `1 / sqrt(dim_head)`.
|
| 81 |
+
only_cross_attention (`bool`, *optional*, defaults to `False`):
|
| 82 |
+
Set to `True` to only use cross attention and not added_kv_proj_dim. Can only be set to `True` if
|
| 83 |
+
`added_kv_proj_dim` is not `None`.
|
| 84 |
+
eps (`float`, *optional*, defaults to 1e-5):
|
| 85 |
+
An additional value added to the denominator in group normalization that is used for numerical stability.
|
| 86 |
+
rescale_output_factor (`float`, *optional*, defaults to 1.0):
|
| 87 |
+
A factor to rescale the output by dividing it with this value.
|
| 88 |
+
residual_connection (`bool`, *optional*, defaults to `False`):
|
| 89 |
+
Set to `True` to add the residual connection to the output.
|
| 90 |
+
_from_deprecated_attn_block (`bool`, *optional*, defaults to `False`):
|
| 91 |
+
Set to `True` if the attention block is loaded from a deprecated state dict.
|
| 92 |
+
processor (`AttnProcessor`, *optional*, defaults to `None`):
|
| 93 |
+
The attention processor to use. If `None`, defaults to `AttnProcessor2_0` if `torch 2.x` is used and
|
| 94 |
+
`AttnProcessor` otherwise.
|
| 95 |
+
"""
|
| 96 |
+
|
| 97 |
+
def __init__(
|
| 98 |
+
self,
|
| 99 |
+
query_dim: int,
|
| 100 |
+
cross_attention_dim: Optional[int] = None,
|
| 101 |
+
heads: int = 8,
|
| 102 |
+
dim_head: int = 64,
|
| 103 |
+
dropout: float = 0.0,
|
| 104 |
+
bias: bool = False,
|
| 105 |
+
upcast_attention: bool = False,
|
| 106 |
+
upcast_softmax: bool = False,
|
| 107 |
+
cross_attention_norm: Optional[str] = None,
|
| 108 |
+
cross_attention_norm_num_groups: int = 32,
|
| 109 |
+
added_kv_proj_dim: Optional[int] = None,
|
| 110 |
+
norm_num_groups: Optional[int] = None,
|
| 111 |
+
out_bias: bool = True,
|
| 112 |
+
scale_qk: bool = True,
|
| 113 |
+
only_cross_attention: bool = False,
|
| 114 |
+
eps: float = 1e-5,
|
| 115 |
+
rescale_output_factor: float = 1.0,
|
| 116 |
+
residual_connection: bool = False,
|
| 117 |
+
_from_deprecated_attn_block: bool = False,
|
| 118 |
+
processor: Optional["AttnProcessor"] = None,
|
| 119 |
+
out_dim: int = None,
|
| 120 |
+
):
|
| 121 |
+
super().__init__()
|
| 122 |
+
self.inner_dim = out_dim if out_dim is not None else dim_head * heads
|
| 123 |
+
self.query_dim = query_dim
|
| 124 |
+
self.cross_attention_dim = (
|
| 125 |
+
cross_attention_dim if cross_attention_dim is not None else query_dim
|
| 126 |
+
)
|
| 127 |
+
self.upcast_attention = upcast_attention
|
| 128 |
+
self.upcast_softmax = upcast_softmax
|
| 129 |
+
self.rescale_output_factor = rescale_output_factor
|
| 130 |
+
self.residual_connection = residual_connection
|
| 131 |
+
self.dropout = dropout
|
| 132 |
+
self.fused_projections = False
|
| 133 |
+
self.out_dim = out_dim if out_dim is not None else query_dim
|
| 134 |
+
|
| 135 |
+
# we make use of this private variable to know whether this class is loaded
|
| 136 |
+
# with an deprecated state dict so that we can convert it on the fly
|
| 137 |
+
self._from_deprecated_attn_block = _from_deprecated_attn_block
|
| 138 |
+
|
| 139 |
+
self.scale_qk = scale_qk
|
| 140 |
+
self.scale = dim_head**-0.5 if self.scale_qk else 1.0
|
| 141 |
+
|
| 142 |
+
self.heads = out_dim // dim_head if out_dim is not None else heads
|
| 143 |
+
# for slice_size > 0 the attention score computation
|
| 144 |
+
# is split across the batch axis to save memory
|
| 145 |
+
# You can set slice_size with `set_attention_slice`
|
| 146 |
+
self.sliceable_head_dim = heads
|
| 147 |
+
|
| 148 |
+
self.added_kv_proj_dim = added_kv_proj_dim
|
| 149 |
+
self.only_cross_attention = only_cross_attention
|
| 150 |
+
|
| 151 |
+
if self.added_kv_proj_dim is None and self.only_cross_attention:
|
| 152 |
+
raise ValueError(
|
| 153 |
+
"`only_cross_attention` can only be set to True if `added_kv_proj_dim` is not None. Make sure to set either `only_cross_attention=False` or define `added_kv_proj_dim`."
|
| 154 |
+
)
|
| 155 |
+
|
| 156 |
+
if norm_num_groups is not None:
|
| 157 |
+
self.group_norm = nn.GroupNorm(
|
| 158 |
+
num_channels=query_dim, num_groups=norm_num_groups, eps=eps, affine=True
|
| 159 |
+
)
|
| 160 |
+
else:
|
| 161 |
+
self.group_norm = None
|
| 162 |
+
|
| 163 |
+
self.spatial_norm = None
|
| 164 |
+
|
| 165 |
+
if cross_attention_norm is None:
|
| 166 |
+
self.norm_cross = None
|
| 167 |
+
elif cross_attention_norm == "layer_norm":
|
| 168 |
+
self.norm_cross = nn.LayerNorm(self.cross_attention_dim)
|
| 169 |
+
elif cross_attention_norm == "group_norm":
|
| 170 |
+
if self.added_kv_proj_dim is not None:
|
| 171 |
+
# The given `encoder_hidden_states` are initially of shape
|
| 172 |
+
# (batch_size, seq_len, added_kv_proj_dim) before being projected
|
| 173 |
+
# to (batch_size, seq_len, cross_attention_dim). The norm is applied
|
| 174 |
+
# before the projection, so we need to use `added_kv_proj_dim` as
|
| 175 |
+
# the number of channels for the group norm.
|
| 176 |
+
norm_cross_num_channels = added_kv_proj_dim
|
| 177 |
+
else:
|
| 178 |
+
norm_cross_num_channels = self.cross_attention_dim
|
| 179 |
+
|
| 180 |
+
self.norm_cross = nn.GroupNorm(
|
| 181 |
+
num_channels=norm_cross_num_channels,
|
| 182 |
+
num_groups=cross_attention_norm_num_groups,
|
| 183 |
+
eps=1e-5,
|
| 184 |
+
affine=True,
|
| 185 |
+
)
|
| 186 |
+
else:
|
| 187 |
+
raise ValueError(
|
| 188 |
+
f"unknown cross_attention_norm: {cross_attention_norm}. Should be None, 'layer_norm' or 'group_norm'"
|
| 189 |
+
)
|
| 190 |
+
|
| 191 |
+
linear_cls = nn.Linear
|
| 192 |
+
|
| 193 |
+
self.linear_cls = linear_cls
|
| 194 |
+
self.to_q = linear_cls(query_dim, self.inner_dim, bias=bias)
|
| 195 |
+
|
| 196 |
+
if not self.only_cross_attention:
|
| 197 |
+
# only relevant for the `AddedKVProcessor` classes
|
| 198 |
+
self.to_k = linear_cls(self.cross_attention_dim, self.inner_dim, bias=bias)
|
| 199 |
+
self.to_v = linear_cls(self.cross_attention_dim, self.inner_dim, bias=bias)
|
| 200 |
+
else:
|
| 201 |
+
self.to_k = None
|
| 202 |
+
self.to_v = None
|
| 203 |
+
|
| 204 |
+
if self.added_kv_proj_dim is not None:
|
| 205 |
+
self.add_k_proj = linear_cls(added_kv_proj_dim, self.inner_dim)
|
| 206 |
+
self.add_v_proj = linear_cls(added_kv_proj_dim, self.inner_dim)
|
| 207 |
+
|
| 208 |
+
self.to_out = nn.ModuleList([])
|
| 209 |
+
self.to_out.append(linear_cls(self.inner_dim, self.out_dim, bias=out_bias))
|
| 210 |
+
self.to_out.append(nn.Dropout(dropout))
|
| 211 |
+
|
| 212 |
+
# set attention processor
|
| 213 |
+
# We use the AttnProcessor2_0 by default when torch 2.x is used which uses
|
| 214 |
+
# torch.nn.functional.scaled_dot_product_attention for native Flash/memory_efficient_attention
|
| 215 |
+
# but only if it has the default `scale` argument. TODO remove scale_qk check when we move to torch 2.1
|
| 216 |
+
if processor is None:
|
| 217 |
+
processor = (
|
| 218 |
+
AttnProcessor2_0()
|
| 219 |
+
if hasattr(F, "scaled_dot_product_attention") and self.scale_qk
|
| 220 |
+
else AttnProcessor()
|
| 221 |
+
)
|
| 222 |
+
self.set_processor(processor)
|
| 223 |
+
|
| 224 |
+
def set_processor(self, processor: "AttnProcessor") -> None:
|
| 225 |
+
self.processor = processor
|
| 226 |
+
|
| 227 |
+
def forward(
|
| 228 |
+
self,
|
| 229 |
+
hidden_states: torch.FloatTensor,
|
| 230 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
| 231 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
| 232 |
+
**cross_attention_kwargs,
|
| 233 |
+
) -> torch.Tensor:
|
| 234 |
+
r"""
|
| 235 |
+
The forward method of the `Attention` class.
|
| 236 |
+
|
| 237 |
+
Args:
|
| 238 |
+
hidden_states (`torch.Tensor`):
|
| 239 |
+
The hidden states of the query.
|
| 240 |
+
encoder_hidden_states (`torch.Tensor`, *optional*):
|
| 241 |
+
The hidden states of the encoder.
|
| 242 |
+
attention_mask (`torch.Tensor`, *optional*):
|
| 243 |
+
The attention mask to use. If `None`, no mask is applied.
|
| 244 |
+
**cross_attention_kwargs:
|
| 245 |
+
Additional keyword arguments to pass along to the cross attention.
|
| 246 |
+
|
| 247 |
+
Returns:
|
| 248 |
+
`torch.Tensor`: The output of the attention layer.
|
| 249 |
+
"""
|
| 250 |
+
# The `Attention` class can call different attention processors / attention functions
|
| 251 |
+
# here we simply pass along all tensors to the selected processor class
|
| 252 |
+
# For standard processors that are defined here, `**cross_attention_kwargs` is empty
|
| 253 |
+
return self.processor(
|
| 254 |
+
self,
|
| 255 |
+
hidden_states,
|
| 256 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 257 |
+
attention_mask=attention_mask,
|
| 258 |
+
**cross_attention_kwargs,
|
| 259 |
+
)
|
| 260 |
+
|
| 261 |
+
def batch_to_head_dim(self, tensor: torch.Tensor) -> torch.Tensor:
|
| 262 |
+
r"""
|
| 263 |
+
Reshape the tensor from `[batch_size, seq_len, dim]` to `[batch_size // heads, seq_len, dim * heads]`. `heads`
|
| 264 |
+
is the number of heads initialized while constructing the `Attention` class.
|
| 265 |
+
|
| 266 |
+
Args:
|
| 267 |
+
tensor (`torch.Tensor`): The tensor to reshape.
|
| 268 |
+
|
| 269 |
+
Returns:
|
| 270 |
+
`torch.Tensor`: The reshaped tensor.
|
| 271 |
+
"""
|
| 272 |
+
head_size = self.heads
|
| 273 |
+
batch_size, seq_len, dim = tensor.shape
|
| 274 |
+
tensor = tensor.reshape(batch_size // head_size, head_size, seq_len, dim)
|
| 275 |
+
tensor = tensor.permute(0, 2, 1, 3).reshape(
|
| 276 |
+
batch_size // head_size, seq_len, dim * head_size
|
| 277 |
+
)
|
| 278 |
+
return tensor
|
| 279 |
+
|
| 280 |
+
def head_to_batch_dim(self, tensor: torch.Tensor, out_dim: int = 3) -> torch.Tensor:
|
| 281 |
+
r"""
|
| 282 |
+
Reshape the tensor from `[batch_size, seq_len, dim]` to `[batch_size, seq_len, heads, dim // heads]` `heads` is
|
| 283 |
+
the number of heads initialized while constructing the `Attention` class.
|
| 284 |
+
|
| 285 |
+
Args:
|
| 286 |
+
tensor (`torch.Tensor`): The tensor to reshape.
|
| 287 |
+
out_dim (`int`, *optional*, defaults to `3`): The output dimension of the tensor. If `3`, the tensor is
|
| 288 |
+
reshaped to `[batch_size * heads, seq_len, dim // heads]`.
|
| 289 |
+
|
| 290 |
+
Returns:
|
| 291 |
+
`torch.Tensor`: The reshaped tensor.
|
| 292 |
+
"""
|
| 293 |
+
head_size = self.heads
|
| 294 |
+
batch_size, seq_len, dim = tensor.shape
|
| 295 |
+
tensor = tensor.reshape(batch_size, seq_len, head_size, dim // head_size)
|
| 296 |
+
tensor = tensor.permute(0, 2, 1, 3)
|
| 297 |
+
|
| 298 |
+
if out_dim == 3:
|
| 299 |
+
tensor = tensor.reshape(batch_size * head_size, seq_len, dim // head_size)
|
| 300 |
+
|
| 301 |
+
return tensor
|
| 302 |
+
|
| 303 |
+
def get_attention_scores(
|
| 304 |
+
self,
|
| 305 |
+
query: torch.Tensor,
|
| 306 |
+
key: torch.Tensor,
|
| 307 |
+
attention_mask: torch.Tensor = None,
|
| 308 |
+
) -> torch.Tensor:
|
| 309 |
+
r"""
|
| 310 |
+
Compute the attention scores.
|
| 311 |
+
|
| 312 |
+
Args:
|
| 313 |
+
query (`torch.Tensor`): The query tensor.
|
| 314 |
+
key (`torch.Tensor`): The key tensor.
|
| 315 |
+
attention_mask (`torch.Tensor`, *optional*): The attention mask to use. If `None`, no mask is applied.
|
| 316 |
+
|
| 317 |
+
Returns:
|
| 318 |
+
`torch.Tensor`: The attention probabilities/scores.
|
| 319 |
+
"""
|
| 320 |
+
dtype = query.dtype
|
| 321 |
+
if self.upcast_attention:
|
| 322 |
+
query = query.float()
|
| 323 |
+
key = key.float()
|
| 324 |
+
|
| 325 |
+
if attention_mask is None:
|
| 326 |
+
baddbmm_input = torch.empty(
|
| 327 |
+
query.shape[0],
|
| 328 |
+
query.shape[1],
|
| 329 |
+
key.shape[1],
|
| 330 |
+
dtype=query.dtype,
|
| 331 |
+
device=query.device,
|
| 332 |
+
)
|
| 333 |
+
beta = 0
|
| 334 |
+
else:
|
| 335 |
+
baddbmm_input = attention_mask
|
| 336 |
+
beta = 1
|
| 337 |
+
|
| 338 |
+
attention_scores = torch.baddbmm(
|
| 339 |
+
baddbmm_input,
|
| 340 |
+
query,
|
| 341 |
+
key.transpose(-1, -2),
|
| 342 |
+
beta=beta,
|
| 343 |
+
alpha=self.scale,
|
| 344 |
+
)
|
| 345 |
+
del baddbmm_input
|
| 346 |
+
|
| 347 |
+
if self.upcast_softmax:
|
| 348 |
+
attention_scores = attention_scores.float()
|
| 349 |
+
|
| 350 |
+
attention_probs = attention_scores.softmax(dim=-1)
|
| 351 |
+
del attention_scores
|
| 352 |
+
|
| 353 |
+
attention_probs = attention_probs.to(dtype)
|
| 354 |
+
|
| 355 |
+
return attention_probs
|
| 356 |
+
|
| 357 |
+
def prepare_attention_mask(
|
| 358 |
+
self,
|
| 359 |
+
attention_mask: torch.Tensor,
|
| 360 |
+
target_length: int,
|
| 361 |
+
batch_size: int,
|
| 362 |
+
out_dim: int = 3,
|
| 363 |
+
) -> torch.Tensor:
|
| 364 |
+
r"""
|
| 365 |
+
Prepare the attention mask for the attention computation.
|
| 366 |
+
|
| 367 |
+
Args:
|
| 368 |
+
attention_mask (`torch.Tensor`):
|
| 369 |
+
The attention mask to prepare.
|
| 370 |
+
target_length (`int`):
|
| 371 |
+
The target length of the attention mask. This is the length of the attention mask after padding.
|
| 372 |
+
batch_size (`int`):
|
| 373 |
+
The batch size, which is used to repeat the attention mask.
|
| 374 |
+
out_dim (`int`, *optional*, defaults to `3`):
|
| 375 |
+
The output dimension of the attention mask. Can be either `3` or `4`.
|
| 376 |
+
|
| 377 |
+
Returns:
|
| 378 |
+
`torch.Tensor`: The prepared attention mask.
|
| 379 |
+
"""
|
| 380 |
+
head_size = self.heads
|
| 381 |
+
if attention_mask is None:
|
| 382 |
+
return attention_mask
|
| 383 |
+
|
| 384 |
+
current_length: int = attention_mask.shape[-1]
|
| 385 |
+
if current_length != target_length:
|
| 386 |
+
if attention_mask.device.type == "mps":
|
| 387 |
+
# HACK: MPS: Does not support padding by greater than dimension of input tensor.
|
| 388 |
+
# Instead, we can manually construct the padding tensor.
|
| 389 |
+
padding_shape = (
|
| 390 |
+
attention_mask.shape[0],
|
| 391 |
+
attention_mask.shape[1],
|
| 392 |
+
target_length,
|
| 393 |
+
)
|
| 394 |
+
padding = torch.zeros(
|
| 395 |
+
padding_shape,
|
| 396 |
+
dtype=attention_mask.dtype,
|
| 397 |
+
device=attention_mask.device,
|
| 398 |
+
)
|
| 399 |
+
attention_mask = torch.cat([attention_mask, padding], dim=2)
|
| 400 |
+
else:
|
| 401 |
+
# TODO: for pipelines such as stable-diffusion, padding cross-attn mask:
|
| 402 |
+
# we want to instead pad by (0, remaining_length), where remaining_length is:
|
| 403 |
+
# remaining_length: int = target_length - current_length
|
| 404 |
+
# TODO: re-enable tests/models/test_models_unet_2d_condition.py#test_model_xattn_padding
|
| 405 |
+
attention_mask = F.pad(attention_mask, (0, target_length), value=0.0)
|
| 406 |
+
|
| 407 |
+
if out_dim == 3:
|
| 408 |
+
if attention_mask.shape[0] < batch_size * head_size:
|
| 409 |
+
attention_mask = attention_mask.repeat_interleave(head_size, dim=0)
|
| 410 |
+
elif out_dim == 4:
|
| 411 |
+
attention_mask = attention_mask.unsqueeze(1)
|
| 412 |
+
attention_mask = attention_mask.repeat_interleave(head_size, dim=1)
|
| 413 |
+
|
| 414 |
+
return attention_mask
|
| 415 |
+
|
| 416 |
+
def norm_encoder_hidden_states(
|
| 417 |
+
self, encoder_hidden_states: torch.Tensor
|
| 418 |
+
) -> torch.Tensor:
|
| 419 |
+
r"""
|
| 420 |
+
Normalize the encoder hidden states. Requires `self.norm_cross` to be specified when constructing the
|
| 421 |
+
`Attention` class.
|
| 422 |
+
|
| 423 |
+
Args:
|
| 424 |
+
encoder_hidden_states (`torch.Tensor`): Hidden states of the encoder.
|
| 425 |
+
|
| 426 |
+
Returns:
|
| 427 |
+
`torch.Tensor`: The normalized encoder hidden states.
|
| 428 |
+
"""
|
| 429 |
+
assert (
|
| 430 |
+
self.norm_cross is not None
|
| 431 |
+
), "self.norm_cross must be defined to call self.norm_encoder_hidden_states"
|
| 432 |
+
|
| 433 |
+
if isinstance(self.norm_cross, nn.LayerNorm):
|
| 434 |
+
encoder_hidden_states = self.norm_cross(encoder_hidden_states)
|
| 435 |
+
elif isinstance(self.norm_cross, nn.GroupNorm):
|
| 436 |
+
# Group norm norms along the channels dimension and expects
|
| 437 |
+
# input to be in the shape of (N, C, *). In this case, we want
|
| 438 |
+
# to norm along the hidden dimension, so we need to move
|
| 439 |
+
# (batch_size, sequence_length, hidden_size) ->
|
| 440 |
+
# (batch_size, hidden_size, sequence_length)
|
| 441 |
+
encoder_hidden_states = encoder_hidden_states.transpose(1, 2)
|
| 442 |
+
encoder_hidden_states = self.norm_cross(encoder_hidden_states)
|
| 443 |
+
encoder_hidden_states = encoder_hidden_states.transpose(1, 2)
|
| 444 |
+
else:
|
| 445 |
+
assert False
|
| 446 |
+
|
| 447 |
+
return encoder_hidden_states
|
| 448 |
+
|
| 449 |
+
@torch.no_grad()
|
| 450 |
+
def fuse_projections(self, fuse=True):
|
| 451 |
+
is_cross_attention = self.cross_attention_dim != self.query_dim
|
| 452 |
+
device = self.to_q.weight.data.device
|
| 453 |
+
dtype = self.to_q.weight.data.dtype
|
| 454 |
+
|
| 455 |
+
if not is_cross_attention:
|
| 456 |
+
# fetch weight matrices.
|
| 457 |
+
concatenated_weights = torch.cat(
|
| 458 |
+
[self.to_q.weight.data, self.to_k.weight.data, self.to_v.weight.data]
|
| 459 |
+
)
|
| 460 |
+
in_features = concatenated_weights.shape[1]
|
| 461 |
+
out_features = concatenated_weights.shape[0]
|
| 462 |
+
|
| 463 |
+
# create a new single projection layer and copy over the weights.
|
| 464 |
+
self.to_qkv = self.linear_cls(
|
| 465 |
+
in_features, out_features, bias=False, device=device, dtype=dtype
|
| 466 |
+
)
|
| 467 |
+
self.to_qkv.weight.copy_(concatenated_weights)
|
| 468 |
+
|
| 469 |
+
else:
|
| 470 |
+
concatenated_weights = torch.cat(
|
| 471 |
+
[self.to_k.weight.data, self.to_v.weight.data]
|
| 472 |
+
)
|
| 473 |
+
in_features = concatenated_weights.shape[1]
|
| 474 |
+
out_features = concatenated_weights.shape[0]
|
| 475 |
+
|
| 476 |
+
self.to_kv = self.linear_cls(
|
| 477 |
+
in_features, out_features, bias=False, device=device, dtype=dtype
|
| 478 |
+
)
|
| 479 |
+
self.to_kv.weight.copy_(concatenated_weights)
|
| 480 |
+
|
| 481 |
+
self.fused_projections = fuse
|
| 482 |
+
|
| 483 |
+
|
| 484 |
+
class AttnProcessor:
|
| 485 |
+
r"""
|
| 486 |
+
Default processor for performing attention-related computations.
|
| 487 |
+
"""
|
| 488 |
+
|
| 489 |
+
def __call__(
|
| 490 |
+
self,
|
| 491 |
+
attn: Attention,
|
| 492 |
+
hidden_states: torch.FloatTensor,
|
| 493 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
| 494 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
| 495 |
+
) -> torch.Tensor:
|
| 496 |
+
residual = hidden_states
|
| 497 |
+
|
| 498 |
+
input_ndim = hidden_states.ndim
|
| 499 |
+
|
| 500 |
+
if input_ndim == 4:
|
| 501 |
+
batch_size, channel, height, width = hidden_states.shape
|
| 502 |
+
hidden_states = hidden_states.view(
|
| 503 |
+
batch_size, channel, height * width
|
| 504 |
+
).transpose(1, 2)
|
| 505 |
+
|
| 506 |
+
batch_size, sequence_length, _ = (
|
| 507 |
+
hidden_states.shape
|
| 508 |
+
if encoder_hidden_states is None
|
| 509 |
+
else encoder_hidden_states.shape
|
| 510 |
+
)
|
| 511 |
+
attention_mask = attn.prepare_attention_mask(
|
| 512 |
+
attention_mask, sequence_length, batch_size
|
| 513 |
+
)
|
| 514 |
+
|
| 515 |
+
if attn.group_norm is not None:
|
| 516 |
+
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(
|
| 517 |
+
1, 2
|
| 518 |
+
)
|
| 519 |
+
|
| 520 |
+
query = attn.to_q(hidden_states)
|
| 521 |
+
|
| 522 |
+
if encoder_hidden_states is None:
|
| 523 |
+
encoder_hidden_states = hidden_states
|
| 524 |
+
elif attn.norm_cross:
|
| 525 |
+
encoder_hidden_states = attn.norm_encoder_hidden_states(
|
| 526 |
+
encoder_hidden_states
|
| 527 |
+
)
|
| 528 |
+
|
| 529 |
+
key = attn.to_k(encoder_hidden_states)
|
| 530 |
+
value = attn.to_v(encoder_hidden_states)
|
| 531 |
+
|
| 532 |
+
query = attn.head_to_batch_dim(query)
|
| 533 |
+
key = attn.head_to_batch_dim(key)
|
| 534 |
+
value = attn.head_to_batch_dim(value)
|
| 535 |
+
|
| 536 |
+
attention_probs = attn.get_attention_scores(query, key, attention_mask)
|
| 537 |
+
hidden_states = torch.bmm(attention_probs, value)
|
| 538 |
+
hidden_states = attn.batch_to_head_dim(hidden_states)
|
| 539 |
+
|
| 540 |
+
# linear proj
|
| 541 |
+
hidden_states = attn.to_out[0](hidden_states)
|
| 542 |
+
# dropout
|
| 543 |
+
hidden_states = attn.to_out[1](hidden_states)
|
| 544 |
+
|
| 545 |
+
if input_ndim == 4:
|
| 546 |
+
hidden_states = hidden_states.transpose(-1, -2).reshape(
|
| 547 |
+
batch_size, channel, height, width
|
| 548 |
+
)
|
| 549 |
+
|
| 550 |
+
if attn.residual_connection:
|
| 551 |
+
hidden_states = hidden_states + residual
|
| 552 |
+
|
| 553 |
+
hidden_states = hidden_states / attn.rescale_output_factor
|
| 554 |
+
|
| 555 |
+
return hidden_states
|
| 556 |
+
|
| 557 |
+
|
| 558 |
+
class AttnProcessor2_0:
|
| 559 |
+
r"""
|
| 560 |
+
Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0).
|
| 561 |
+
"""
|
| 562 |
+
|
| 563 |
+
def __init__(self):
|
| 564 |
+
if not hasattr(F, "scaled_dot_product_attention"):
|
| 565 |
+
raise ImportError(
|
| 566 |
+
"AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0."
|
| 567 |
+
)
|
| 568 |
+
|
| 569 |
+
def __call__(
|
| 570 |
+
self,
|
| 571 |
+
attn: Attention,
|
| 572 |
+
hidden_states: torch.FloatTensor,
|
| 573 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
| 574 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
| 575 |
+
) -> torch.FloatTensor:
|
| 576 |
+
residual = hidden_states
|
| 577 |
+
|
| 578 |
+
input_ndim = hidden_states.ndim
|
| 579 |
+
|
| 580 |
+
if input_ndim == 4:
|
| 581 |
+
batch_size, channel, height, width = hidden_states.shape
|
| 582 |
+
hidden_states = hidden_states.view(
|
| 583 |
+
batch_size, channel, height * width
|
| 584 |
+
).transpose(1, 2)
|
| 585 |
+
|
| 586 |
+
batch_size, sequence_length, _ = (
|
| 587 |
+
hidden_states.shape
|
| 588 |
+
if encoder_hidden_states is None
|
| 589 |
+
else encoder_hidden_states.shape
|
| 590 |
+
)
|
| 591 |
+
|
| 592 |
+
if attention_mask is not None:
|
| 593 |
+
attention_mask = attn.prepare_attention_mask(
|
| 594 |
+
attention_mask, sequence_length, batch_size
|
| 595 |
+
)
|
| 596 |
+
# scaled_dot_product_attention expects attention_mask shape to be
|
| 597 |
+
# (batch, heads, source_length, target_length)
|
| 598 |
+
attention_mask = attention_mask.view(
|
| 599 |
+
batch_size, attn.heads, -1, attention_mask.shape[-1]
|
| 600 |
+
)
|
| 601 |
+
|
| 602 |
+
if attn.group_norm is not None:
|
| 603 |
+
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(
|
| 604 |
+
1, 2
|
| 605 |
+
)
|
| 606 |
+
|
| 607 |
+
query = attn.to_q(hidden_states)
|
| 608 |
+
|
| 609 |
+
if encoder_hidden_states is None:
|
| 610 |
+
encoder_hidden_states = hidden_states
|
| 611 |
+
elif attn.norm_cross:
|
| 612 |
+
encoder_hidden_states = attn.norm_encoder_hidden_states(
|
| 613 |
+
encoder_hidden_states
|
| 614 |
+
)
|
| 615 |
+
|
| 616 |
+
key = attn.to_k(encoder_hidden_states)
|
| 617 |
+
value = attn.to_v(encoder_hidden_states)
|
| 618 |
+
|
| 619 |
+
inner_dim = key.shape[-1]
|
| 620 |
+
head_dim = inner_dim // attn.heads
|
| 621 |
+
|
| 622 |
+
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
| 623 |
+
|
| 624 |
+
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
| 625 |
+
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
| 626 |
+
|
| 627 |
+
# the output of sdp = (batch, num_heads, seq_len, head_dim)
|
| 628 |
+
# TODO: add support for attn.scale when we move to Torch 2.1
|
| 629 |
+
hidden_states = F.scaled_dot_product_attention(
|
| 630 |
+
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
|
| 631 |
+
)
|
| 632 |
+
|
| 633 |
+
hidden_states = hidden_states.transpose(1, 2).reshape(
|
| 634 |
+
batch_size, -1, attn.heads * head_dim
|
| 635 |
+
)
|
| 636 |
+
hidden_states = hidden_states.to(query.dtype)
|
| 637 |
+
|
| 638 |
+
# linear proj
|
| 639 |
+
hidden_states = attn.to_out[0](hidden_states)
|
| 640 |
+
# dropout
|
| 641 |
+
hidden_states = attn.to_out[1](hidden_states)
|
| 642 |
+
|
| 643 |
+
if input_ndim == 4:
|
| 644 |
+
hidden_states = hidden_states.transpose(-1, -2).reshape(
|
| 645 |
+
batch_size, channel, height, width
|
| 646 |
+
)
|
| 647 |
+
|
| 648 |
+
if attn.residual_connection:
|
| 649 |
+
hidden_states = hidden_states + residual
|
| 650 |
+
|
| 651 |
+
hidden_states = hidden_states / attn.rescale_output_factor
|
| 652 |
+
|
| 653 |
+
return hidden_states
|