Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -11,19 +11,14 @@ import io
|
|
| 11 |
import zipfile
|
| 12 |
import uuid
|
| 13 |
import traceback
|
| 14 |
-
from huggingface_hub import snapshot_download
|
| 15 |
from flask_cors import CORS
|
| 16 |
import numpy as np
|
| 17 |
import trimesh
|
| 18 |
-
from
|
|
|
|
|
|
|
| 19 |
import cv2
|
| 20 |
-
import torch.nn.functional as F
|
| 21 |
-
|
| 22 |
-
# Try to login with token if available
|
| 23 |
-
HF_TOKEN = os.environ.get("HF_TOKEN", None)
|
| 24 |
-
if HF_TOKEN:
|
| 25 |
-
print("Logging in with Hugging Face token")
|
| 26 |
-
login(token=HF_TOKEN)
|
| 27 |
|
| 28 |
app = Flask(__name__)
|
| 29 |
CORS(app) # Enable CORS for all routes
|
|
@@ -43,7 +38,6 @@ os.makedirs(CACHE_DIR, exist_ok=True)
|
|
| 43 |
os.environ['HF_HOME'] = CACHE_DIR
|
| 44 |
os.environ['TRANSFORMERS_CACHE'] = os.path.join(CACHE_DIR, 'transformers')
|
| 45 |
os.environ['HF_DATASETS_CACHE'] = os.path.join(CACHE_DIR, 'datasets')
|
| 46 |
-
os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'max_split_size_mb:128' # Limit CUDA memory splits
|
| 47 |
|
| 48 |
app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER
|
| 49 |
app.config['MAX_CONTENT_LENGTH'] = 16 * 1024 * 1024 # 16MB max
|
|
@@ -52,16 +46,11 @@ app.config['MAX_CONTENT_LENGTH'] = 16 * 1024 * 1024 # 16MB max
|
|
| 52 |
processing_jobs = {}
|
| 53 |
|
| 54 |
# Global model variables
|
| 55 |
-
|
| 56 |
-
feature_extractor = None
|
| 57 |
-
openlrm_model = None
|
| 58 |
model_loaded = False
|
| 59 |
model_loading = False
|
| 60 |
|
| 61 |
-
#
|
| 62 |
-
USE_SIMPLIFIED_MODE = os.environ.get('USE_SIMPLIFIED_MODE', 'false').lower() == 'true'
|
| 63 |
-
|
| 64 |
-
# Constants for processing
|
| 65 |
TIMEOUT_SECONDS = 240 # 4 minutes max for processing
|
| 66 |
MAX_DIMENSION = 512 # Max image dimension to process
|
| 67 |
|
|
@@ -99,16 +88,10 @@ def process_with_timeout(function, args, timeout):
|
|
| 99 |
|
| 100 |
return result[0], None
|
| 101 |
|
| 102 |
-
def optimize_memory():
|
| 103 |
-
"""Free up memory to avoid OOM errors"""
|
| 104 |
-
gc.collect()
|
| 105 |
-
if torch.cuda.is_available():
|
| 106 |
-
torch.cuda.empty_cache()
|
| 107 |
-
|
| 108 |
def allowed_file(filename):
|
| 109 |
return '.' in filename and filename.rsplit('.', 1)[1].lower() in ALLOWED_EXTENSIONS
|
| 110 |
|
| 111 |
-
# Enhanced image preprocessing
|
| 112 |
def preprocess_image(image_path):
|
| 113 |
with Image.open(image_path) as img:
|
| 114 |
img = img.convert("RGB")
|
|
@@ -123,13 +106,14 @@ def preprocess_image(image_path):
|
|
| 123 |
new_height = MAX_DIMENSION
|
| 124 |
new_width = int(img.width * (MAX_DIMENSION / img.height))
|
| 125 |
|
| 126 |
-
# Use high-quality Lanczos resampling
|
| 127 |
img = img.resize((new_width, new_height), Image.LANCZOS)
|
| 128 |
|
| 129 |
# Convert to numpy array for additional preprocessing
|
| 130 |
img_array = np.array(img)
|
| 131 |
|
| 132 |
-
# Apply adaptive histogram equalization for better contrast
|
|
|
|
| 133 |
if len(img_array.shape) == 3 and img_array.shape[2] == 3:
|
| 134 |
# Convert to LAB color space
|
| 135 |
lab = cv2.cvtColor(img_array, cv2.COLOR_RGB2LAB)
|
|
@@ -150,419 +134,73 @@ def preprocess_image(image_path):
|
|
| 150 |
|
| 151 |
return img
|
| 152 |
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
"""Remove background if rembg is available, otherwise return original image"""
|
| 156 |
-
try:
|
| 157 |
-
import rembg
|
| 158 |
-
return rembg.remove(image)
|
| 159 |
-
except ImportError:
|
| 160 |
-
print("Rembg not available, skipping background removal")
|
| 161 |
-
# Create a copy of the image with RGBA
|
| 162 |
-
if isinstance(image, Image.Image):
|
| 163 |
-
if image.mode != 'RGBA':
|
| 164 |
-
return image.convert('RGBA')
|
| 165 |
-
return image
|
| 166 |
-
|
| 167 |
-
# Function to select available models - checks which models are accessible
|
| 168 |
-
def select_available_model():
|
| 169 |
-
"""Try to find an available public model for depth estimation"""
|
| 170 |
-
public_models = [
|
| 171 |
-
"facebook/dpt-hybrid-midas", # Public DPT model
|
| 172 |
-
"Intel/dpt-large", # Intel's DPT model
|
| 173 |
-
"facebook/dinov2-base", # General vision model
|
| 174 |
-
]
|
| 175 |
-
|
| 176 |
-
# Try each model in turn
|
| 177 |
-
for model_name in public_models:
|
| 178 |
-
try:
|
| 179 |
-
print(f"Testing model availability: {model_name}")
|
| 180 |
-
# Just try to download the config to check if accessible
|
| 181 |
-
from transformers import AutoConfig
|
| 182 |
-
AutoConfig.from_pretrained(model_name, force_download=False)
|
| 183 |
-
print(f"Model {model_name} is available")
|
| 184 |
-
return model_name
|
| 185 |
-
except Exception as e:
|
| 186 |
-
print(f"Model {model_name} not available: {str(e)}")
|
| 187 |
-
|
| 188 |
-
print("No suitable models found. Using manual depth map generation.")
|
| 189 |
-
return None
|
| 190 |
-
|
| 191 |
-
# Updated OpenLRM loading with fallback to simplified model
|
| 192 |
-
def load_openlrm_model():
|
| 193 |
-
global openlrm_model, model_loaded, model_loading
|
| 194 |
|
| 195 |
-
if model_loaded
|
| 196 |
-
return
|
| 197 |
|
| 198 |
if model_loading:
|
| 199 |
# Wait for model to load if it's already in progress
|
| 200 |
while model_loading and not model_loaded:
|
| 201 |
time.sleep(0.5)
|
| 202 |
-
return
|
| 203 |
|
| 204 |
try:
|
| 205 |
model_loading = True
|
| 206 |
-
print("
|
| 207 |
|
| 208 |
-
#
|
| 209 |
-
|
|
|
|
| 210 |
|
| 211 |
-
#
|
| 212 |
-
|
| 213 |
-
|
| 214 |
-
def __init__(self, device):
|
| 215 |
-
self.device = device
|
| 216 |
-
print(f"Initialized simple 3D wrapper on {device}")
|
| 217 |
-
|
| 218 |
-
def __call__(self, image):
|
| 219 |
-
"""Create a 3D mesh representation from an image"""
|
| 220 |
-
# Generate a depth map without complex models
|
| 221 |
-
depth_map = create_simple_depth_map(image)
|
| 222 |
-
|
| 223 |
-
# Convert depth map to vertices and faces
|
| 224 |
-
h, w = depth_map.shape
|
| 225 |
-
vertices = []
|
| 226 |
-
|
| 227 |
-
# Create vertices - scale to [-1, 1] range for x and y
|
| 228 |
-
scale_factor = 2.0
|
| 229 |
-
for i in range(h):
|
| 230 |
-
for j in range(w):
|
| 231 |
-
x = (j / w - 0.5) * scale_factor
|
| 232 |
-
y = (i / h - 0.5) * scale_factor
|
| 233 |
-
z = depth_map[i, j] * scale_factor * -1 # Negative to make closer objects "pop out"
|
| 234 |
-
vertices.append([x, y, z])
|
| 235 |
-
|
| 236 |
-
# Create faces - connect neighboring vertices
|
| 237 |
-
faces = []
|
| 238 |
-
for i in range(h-1):
|
| 239 |
-
for j in range(w-1):
|
| 240 |
-
v0 = i * w + j
|
| 241 |
-
v1 = i * w + (j + 1)
|
| 242 |
-
v2 = (i + 1) * w + j
|
| 243 |
-
v3 = (i + 1) * w + (j + 1)
|
| 244 |
-
|
| 245 |
-
# Two triangles per grid cell
|
| 246 |
-
faces.append([v0, v1, v3])
|
| 247 |
-
faces.append([v0, v3, v2])
|
| 248 |
-
|
| 249 |
-
return {
|
| 250 |
-
"vertices": np.array(vertices),
|
| 251 |
-
"faces": np.array(faces)
|
| 252 |
-
}
|
| 253 |
-
|
| 254 |
-
# Create the 3D model wrapper
|
| 255 |
-
openlrm_model = Simple3DWrapper(device)
|
| 256 |
|
| 257 |
-
|
| 258 |
-
|
| 259 |
-
|
| 260 |
-
|
| 261 |
-
|
| 262 |
-
|
| 263 |
-
|
| 264 |
-
|
| 265 |
-
|
| 266 |
-
|
| 267 |
-
|
| 268 |
-
|
| 269 |
-
|
| 270 |
-
|
| 271 |
-
|
| 272 |
-
if depth_model is not None and feature_extractor is not None:
|
| 273 |
-
return depth_model, feature_extractor
|
| 274 |
-
|
| 275 |
-
try:
|
| 276 |
-
print("Loading depth estimation model...")
|
| 277 |
-
|
| 278 |
-
# Select an available public model
|
| 279 |
-
model_name = select_available_model()
|
| 280 |
-
|
| 281 |
-
if model_name is None:
|
| 282 |
-
print("No suitable depth model found. Using manual depth map generation.")
|
| 283 |
-
return None, None
|
| 284 |
|
| 285 |
-
#
|
| 286 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 287 |
|
| 288 |
-
#
|
| 289 |
-
|
| 290 |
-
|
| 291 |
-
|
| 292 |
-
|
| 293 |
-
|
| 294 |
-
|
| 295 |
-
from transformers import AutoFeatureExtractor, AutoModel
|
| 296 |
-
print(f"Loading DINOv2 model: {model_name}")
|
| 297 |
-
feature_extractor = AutoFeatureExtractor.from_pretrained(model_name, token=HF_TOKEN)
|
| 298 |
-
depth_model = AutoModel.from_pretrained(model_name, token=HF_TOKEN)
|
| 299 |
-
else:
|
| 300 |
-
# Generic loading
|
| 301 |
-
from transformers import AutoFeatureExtractor, AutoModelForDepthEstimation
|
| 302 |
-
print(f"Loading Auto depth model: {model_name}")
|
| 303 |
-
feature_extractor = AutoFeatureExtractor.from_pretrained(model_name, token=HF_TOKEN)
|
| 304 |
-
depth_model = AutoModelForDepthEstimation.from_pretrained(model_name, token=HF_TOKEN)
|
| 305 |
|
| 306 |
-
#
|
| 307 |
if device == "cuda":
|
| 308 |
-
|
| 309 |
-
|
| 310 |
-
print(f"Depth model loaded successfully on {device}")
|
| 311 |
-
return depth_model, feature_extractor
|
| 312 |
-
|
| 313 |
-
except Exception as e:
|
| 314 |
-
print(f"Error loading depth model: {str(e)}")
|
| 315 |
-
print(traceback.format_exc())
|
| 316 |
-
print("Using manual depth map generation instead.")
|
| 317 |
-
return None, None
|
| 318 |
-
|
| 319 |
-
# Create a simple depth map without ML models
|
| 320 |
-
def create_simple_depth_map(image):
|
| 321 |
-
"""Create a simple depth map from image without ML models"""
|
| 322 |
-
# Convert to numpy array if needed
|
| 323 |
-
if isinstance(image, Image.Image):
|
| 324 |
-
img_array = np.array(image)
|
| 325 |
-
else:
|
| 326 |
-
img_array = image
|
| 327 |
-
|
| 328 |
-
# Convert to grayscale
|
| 329 |
-
if len(img_array.shape) == 3 and img_array.shape[2] >= 3:
|
| 330 |
-
gray = cv2.cvtColor(img_array, cv2.COLOR_RGB2GRAY)
|
| 331 |
-
else:
|
| 332 |
-
gray = img_array.astype(np.uint8)
|
| 333 |
-
|
| 334 |
-
# Apply edge detection
|
| 335 |
-
edges = cv2.Canny(gray, 100, 200)
|
| 336 |
-
|
| 337 |
-
# Create depth map using blur and edges
|
| 338 |
-
depth_map = cv2.GaussianBlur(gray, (15, 15), 0)
|
| 339 |
-
|
| 340 |
-
# Combine with edges to preserve details
|
| 341 |
-
depth_map = depth_map.astype(float) / 255.0
|
| 342 |
-
edges = edges.astype(float) / 255.0
|
| 343 |
-
|
| 344 |
-
# Edges should be deeper in the depth map
|
| 345 |
-
depth_map = depth_map * (1.0 - 0.5 * edges)
|
| 346 |
-
|
| 347 |
-
# Center objects usually closer to viewer (create a radial gradient)
|
| 348 |
-
h, w = depth_map.shape
|
| 349 |
-
center_y, center_x = h // 2, w // 2
|
| 350 |
-
y, x = np.ogrid[:h, :w]
|
| 351 |
-
dist_from_center = np.sqrt((x - center_x)**2 + (y - center_y)**2)
|
| 352 |
-
max_dist = np.sqrt(center_x**2 + center_y**2)
|
| 353 |
-
dist_factor = dist_from_center / max_dist
|
| 354 |
-
|
| 355 |
-
# Apply center bias - center is closer (lower depth values)
|
| 356 |
-
depth_map = depth_map + 0.3 * dist_factor
|
| 357 |
-
|
| 358 |
-
# Normalize
|
| 359 |
-
depth_map = (depth_map - depth_map.min()) / (depth_map.max() - depth_map.min() + 1e-10)
|
| 360 |
-
|
| 361 |
-
# Smooth the depth map to avoid artifacts
|
| 362 |
-
depth_map = gaussian_filter(depth_map, sigma=1.0)
|
| 363 |
-
|
| 364 |
-
return depth_map
|
| 365 |
-
|
| 366 |
-
# Process image to create 3D model using simplified approach
|
| 367 |
-
def process_openlrm(image, job_id, detail_level='medium', output_format='obj'):
|
| 368 |
-
try:
|
| 369 |
-
# Load OpenLRM model - now returns simplified 3D generator
|
| 370 |
-
model = load_openlrm_model()
|
| 371 |
-
if model is None:
|
| 372 |
-
# Fallback to depth-based approach
|
| 373 |
-
return process_depth_based(image, job_id, detail_level, output_format)
|
| 374 |
-
|
| 375 |
-
# Preprocess image - remove background for better results
|
| 376 |
-
processing_jobs[job_id]['progress'] = 20
|
| 377 |
-
image_rgba = remove_background(image)
|
| 378 |
-
|
| 379 |
-
# Update progress
|
| 380 |
-
processing_jobs[job_id]['progress'] = 40
|
| 381 |
-
|
| 382 |
-
# Process with model to get 3D mesh
|
| 383 |
-
result = model(image_rgba)
|
| 384 |
-
|
| 385 |
-
# Update progress
|
| 386 |
-
processing_jobs[job_id]['progress'] = 60
|
| 387 |
-
|
| 388 |
-
# Convert model result to trimesh format
|
| 389 |
-
mesh = convert_to_trimesh(result, image)
|
| 390 |
-
|
| 391 |
-
# Update progress
|
| 392 |
-
processing_jobs[job_id]['progress'] = 80
|
| 393 |
-
|
| 394 |
-
# Return the created mesh
|
| 395 |
-
return mesh
|
| 396 |
-
|
| 397 |
-
except Exception as e:
|
| 398 |
-
print(f"Error in OpenLRM processing: {str(e)}")
|
| 399 |
-
print(traceback.format_exc())
|
| 400 |
-
# Fallback to depth-based approach if OpenLRM fails
|
| 401 |
-
return process_depth_based(image, job_id, detail_level, output_format)
|
| 402 |
-
|
| 403 |
-
# Convert OpenLRM result to trimesh
|
| 404 |
-
def convert_to_trimesh(result, image):
|
| 405 |
-
# Use the provided vertices and faces from the model result
|
| 406 |
-
vertices = np.array(result.get("vertices", []))
|
| 407 |
-
faces = np.array(result.get("faces", []))
|
| 408 |
-
|
| 409 |
-
# Create a default mesh if needed
|
| 410 |
-
if len(vertices) == 0 or len(faces) == 0:
|
| 411 |
-
# Generate sample vertices and faces
|
| 412 |
-
x = np.linspace(-1, 1, 20)
|
| 413 |
-
y = np.linspace(-1, 1, 20)
|
| 414 |
-
z = np.linspace(-1, 1, 10)
|
| 415 |
-
|
| 416 |
-
# Create grid points
|
| 417 |
-
xx, yy = np.meshgrid(x, y)
|
| 418 |
-
zz = np.zeros_like(xx)
|
| 419 |
-
|
| 420 |
-
# Create a simple height field
|
| 421 |
-
vertices = np.vstack([xx.flatten(), yy.flatten(), zz.flatten()]).T
|
| 422 |
-
|
| 423 |
-
# Create faces
|
| 424 |
-
faces = []
|
| 425 |
-
n = 20 # Grid size
|
| 426 |
-
for i in range(n-1):
|
| 427 |
-
for j in range(n-1):
|
| 428 |
-
idx = i*n + j
|
| 429 |
-
faces.append([idx, idx+1, idx+n])
|
| 430 |
-
faces.append([idx+1, idx+n+1, idx+n])
|
| 431 |
-
faces = np.array(faces)
|
| 432 |
-
|
| 433 |
-
# Create mesh with provided data
|
| 434 |
-
mesh = trimesh.Trimesh(vertices=vertices, faces=faces)
|
| 435 |
-
|
| 436 |
-
# Add texture from the original image
|
| 437 |
-
if hasattr(image, 'convert'):
|
| 438 |
-
try:
|
| 439 |
-
img_array = np.array(image.convert("RGBA"))
|
| 440 |
-
if img_array.shape[2] == 4: # RGBA
|
| 441 |
-
vertex_colors = sample_texture_from_image(img_array, vertices)
|
| 442 |
-
mesh.visual.vertex_colors = vertex_colors
|
| 443 |
-
except Exception as e:
|
| 444 |
-
print(f"Error applying texture: {e}")
|
| 445 |
-
|
| 446 |
-
return mesh
|
| 447 |
-
|
| 448 |
-
# Sample helper functions for mesh creation
|
| 449 |
-
def sample_texture_from_image(image, vertices):
|
| 450 |
-
"""Sample colors from image based on vertex positions"""
|
| 451 |
-
# Sample colors from image based on vertex positions
|
| 452 |
-
h, w = image.shape[:2]
|
| 453 |
-
colors = np.zeros((len(vertices), 4), dtype=np.uint8)
|
| 454 |
-
|
| 455 |
-
# Find the range of vertex positions
|
| 456 |
-
min_x, min_y = vertices[:, 0].min(), vertices[:, 1].min()
|
| 457 |
-
max_x, max_y = vertices[:, 0].max(), vertices[:, 1].max()
|
| 458 |
-
|
| 459 |
-
# Normalize vertex positions to [0,1] for sampling
|
| 460 |
-
for i, v in enumerate(vertices):
|
| 461 |
-
# Map from vertex coordinates to image coordinates
|
| 462 |
-
x_norm = (v[0] - min_x) / (max_x - min_x) if max_x > min_x else 0.5
|
| 463 |
-
y_norm = (v[1] - min_y) / (max_y - min_y) if max_y > min_y else 0.5
|
| 464 |
-
|
| 465 |
-
# Clamp to valid range
|
| 466 |
-
x_norm = max(0, min(1, x_norm))
|
| 467 |
-
y_norm = max(0, min(1, y_norm))
|
| 468 |
|
| 469 |
-
|
| 470 |
-
|
| 471 |
-
|
| 472 |
-
|
| 473 |
-
# Sample color
|
| 474 |
-
if 0 <= x < w and 0 <= y < h:
|
| 475 |
-
colors[i] = image[y, x]
|
| 476 |
-
else:
|
| 477 |
-
colors[i] = [200, 200, 200, 255] # Default color
|
| 478 |
|
| 479 |
-
return colors
|
| 480 |
-
|
| 481 |
-
# Process using depth-based approach as fallback
|
| 482 |
-
def process_depth_based(image, job_id, detail_level='medium', output_format='obj'):
|
| 483 |
-
try:
|
| 484 |
-
# Load depth model
|
| 485 |
-
depth_model_result = load_depth_model()
|
| 486 |
-
|
| 487 |
-
# Update progress
|
| 488 |
-
processing_jobs[job_id]['progress'] = 30
|
| 489 |
-
|
| 490 |
-
# Check if model loading was successful
|
| 491 |
-
if depth_model_result[0] is None:
|
| 492 |
-
# Use manual depth map generation
|
| 493 |
-
print("Using manual depth map generation")
|
| 494 |
-
depth_map = create_simple_depth_map(image)
|
| 495 |
-
else:
|
| 496 |
-
# Extract model and feature extractor
|
| 497 |
-
depth_model, feature_extractor = depth_model_result
|
| 498 |
-
|
| 499 |
-
# Get depth map from model
|
| 500 |
-
with torch.no_grad():
|
| 501 |
-
# Prepare image for the model
|
| 502 |
-
inputs = feature_extractor(images=image, return_tensors="pt")
|
| 503 |
-
if torch.cuda.is_available():
|
| 504 |
-
inputs = {k: v.cuda() for k, v in inputs.items()}
|
| 505 |
-
|
| 506 |
-
# Forward pass
|
| 507 |
-
outputs = depth_model(**inputs)
|
| 508 |
-
|
| 509 |
-
# Different models have different output formats
|
| 510 |
-
if hasattr(outputs, "predicted_depth"):
|
| 511 |
-
predicted_depth = outputs.predicted_depth
|
| 512 |
-
elif hasattr(outputs, "logits"): # For some models
|
| 513 |
-
predicted_depth = outputs.logits
|
| 514 |
-
else:
|
| 515 |
-
# Generic handling - take the first output tensor
|
| 516 |
-
predicted_depth = list(outputs.values())[0]
|
| 517 |
-
|
| 518 |
-
# Resize depth to original image size
|
| 519 |
-
depth_map = F.interpolate(
|
| 520 |
-
predicted_depth.unsqueeze(1),
|
| 521 |
-
size=(image.height, image.width),
|
| 522 |
-
mode="bicubic",
|
| 523 |
-
align_corners=False,
|
| 524 |
-
).squeeze().cpu().numpy()
|
| 525 |
-
|
| 526 |
-
# Update progress
|
| 527 |
-
processing_jobs[job_id]['progress'] = 60
|
| 528 |
-
|
| 529 |
-
# Normalize depth map if from model
|
| 530 |
-
if 'depth_map' not in locals():
|
| 531 |
-
depth_min = depth_map.min()
|
| 532 |
-
depth_max = depth_map.max()
|
| 533 |
-
depth_normalized = (depth_map - depth_min) / (depth_max - depth_min + 1e-10)
|
| 534 |
-
else:
|
| 535 |
-
depth_normalized = depth_map
|
| 536 |
-
|
| 537 |
-
# Create mesh from depth map
|
| 538 |
-
mesh = depth_to_mesh(depth_normalized, image,
|
| 539 |
-
resolution=100 if detail_level == 'medium' else
|
| 540 |
-
150 if detail_level == 'high' else 80,
|
| 541 |
-
detail_level=detail_level)
|
| 542 |
-
|
| 543 |
-
# Update progress
|
| 544 |
-
processing_jobs[job_id]['progress'] = 80
|
| 545 |
-
|
| 546 |
-
# Clean up to free memory
|
| 547 |
-
optimize_memory()
|
| 548 |
-
|
| 549 |
-
return mesh
|
| 550 |
-
|
| 551 |
except Exception as e:
|
| 552 |
-
print(f"Error
|
| 553 |
print(traceback.format_exc())
|
| 554 |
-
|
| 555 |
-
|
| 556 |
-
|
| 557 |
-
print("Using emergency fallback mesh generation")
|
| 558 |
-
depth_map = create_simple_depth_map(image)
|
| 559 |
-
mesh = depth_to_mesh(depth_map, image, resolution=50, detail_level='low')
|
| 560 |
-
return mesh
|
| 561 |
-
except Exception as fallback_error:
|
| 562 |
-
print(f"Fallback mesh generation failed: {fallback_error}")
|
| 563 |
-
raise
|
| 564 |
|
| 565 |
-
# Enhanced depth
|
| 566 |
def enhance_depth_map(depth_map, detail_level='medium'):
|
| 567 |
"""Apply sophisticated processing to enhance depth map details"""
|
| 568 |
# Convert to numpy array if needed
|
|
@@ -576,7 +214,7 @@ def enhance_depth_map(depth_map, detail_level='medium'):
|
|
| 576 |
# Create a copy for processing
|
| 577 |
enhanced_depth = depth_map.copy().astype(np.float32)
|
| 578 |
|
| 579 |
-
# Remove outliers using percentile clipping
|
| 580 |
p_low, p_high = np.percentile(enhanced_depth, [1, 99])
|
| 581 |
enhanced_depth = np.clip(enhanced_depth, p_low, p_high)
|
| 582 |
|
|
@@ -585,26 +223,33 @@ def enhance_depth_map(depth_map, detail_level='medium'):
|
|
| 585 |
|
| 586 |
# Apply different enhancement methods based on detail level
|
| 587 |
if detail_level == 'high':
|
| 588 |
-
# Apply unsharp masking for edge enhancement
|
|
|
|
| 589 |
blurred = gaussian_filter(enhanced_depth, sigma=1.5)
|
|
|
|
| 590 |
mask = enhanced_depth - blurred
|
|
|
|
| 591 |
enhanced_depth = enhanced_depth + 1.5 * mask
|
| 592 |
|
| 593 |
-
# Apply bilateral filter
|
|
|
|
| 594 |
smooth1 = gaussian_filter(enhanced_depth, sigma=0.5)
|
| 595 |
smooth2 = gaussian_filter(enhanced_depth, sigma=2.0)
|
| 596 |
edge_mask = enhanced_depth - smooth2
|
| 597 |
enhanced_depth = smooth1 + 1.2 * edge_mask
|
| 598 |
|
| 599 |
elif detail_level == 'medium':
|
| 600 |
-
# Less aggressive enhancement
|
|
|
|
| 601 |
blurred = gaussian_filter(enhanced_depth, sigma=1.0)
|
| 602 |
mask = enhanced_depth - blurred
|
| 603 |
enhanced_depth = enhanced_depth + 0.8 * mask
|
|
|
|
|
|
|
| 604 |
enhanced_depth = gaussian_filter(enhanced_depth, sigma=0.5)
|
| 605 |
|
| 606 |
else: # low
|
| 607 |
-
# Just apply noise reduction
|
| 608 |
enhanced_depth = gaussian_filter(enhanced_depth, sigma=0.7)
|
| 609 |
|
| 610 |
# Normalize again after processing
|
|
@@ -612,9 +257,9 @@ def enhance_depth_map(depth_map, detail_level='medium'):
|
|
| 612 |
|
| 613 |
return enhanced_depth
|
| 614 |
|
| 615 |
-
#
|
| 616 |
def depth_to_mesh(depth_map, image, resolution=100, detail_level='medium'):
|
| 617 |
-
"""Convert depth map to 3D mesh with improved detail preservation"""
|
| 618 |
# First, enhance the depth map for better details
|
| 619 |
enhanced_depth = enhance_depth_map(depth_map, detail_level)
|
| 620 |
|
|
@@ -626,31 +271,50 @@ def depth_to_mesh(depth_map, image, resolution=100, detail_level='medium'):
|
|
| 626 |
y = np.linspace(0, h-1, resolution)
|
| 627 |
x_grid, y_grid = np.meshgrid(x, y)
|
| 628 |
|
| 629 |
-
#
|
| 630 |
-
|
| 631 |
interp_func = interpolate.RectBivariateSpline(
|
| 632 |
np.arange(h), np.arange(w), enhanced_depth, kx=3, ky=3
|
| 633 |
)
|
|
|
|
|
|
|
| 634 |
z_values = interp_func(y, x, grid=True)
|
| 635 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 636 |
# Apply depth scaling appropriate to the detail level
|
| 637 |
if detail_level == 'high':
|
| 638 |
-
z_scaling = 2.5 # More pronounced depth
|
| 639 |
elif detail_level == 'medium':
|
| 640 |
z_scaling = 2.0 # Standard depth
|
| 641 |
else:
|
| 642 |
-
z_scaling = 1.5 #
|
| 643 |
|
| 644 |
z_values = z_values * z_scaling
|
| 645 |
|
| 646 |
-
# Normalize coordinates
|
| 647 |
x_grid = (x_grid / w - 0.5) * 2.0 # Map to -1 to 1
|
| 648 |
y_grid = (y_grid / h - 0.5) * 2.0 # Map to -1 to 1
|
| 649 |
|
| 650 |
# Create vertices
|
| 651 |
vertices = np.vstack([x_grid.flatten(), -y_grid.flatten(), -z_values.flatten()]).T
|
| 652 |
|
| 653 |
-
# Create faces (triangles)
|
| 654 |
faces = []
|
| 655 |
for i in range(resolution-1):
|
| 656 |
for j in range(resolution-1):
|
|
@@ -659,167 +323,104 @@ def depth_to_mesh(depth_map, image, resolution=100, detail_level='medium'):
|
|
| 659 |
p3 = (i + 1) * resolution + j
|
| 660 |
p4 = (i + 1) * resolution + (j + 1)
|
| 661 |
|
| 662 |
-
#
|
| 663 |
-
|
| 664 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 665 |
|
| 666 |
faces = np.array(faces)
|
| 667 |
|
| 668 |
# Create mesh
|
| 669 |
mesh = trimesh.Trimesh(vertices=vertices, faces=faces)
|
| 670 |
|
| 671 |
-
# Apply texturing if image is provided
|
| 672 |
-
if image
|
| 673 |
# Convert to numpy array if needed
|
| 674 |
if isinstance(image, Image.Image):
|
| 675 |
img_array = np.array(image)
|
| 676 |
else:
|
| 677 |
img_array = image
|
| 678 |
|
| 679 |
-
# Create vertex colors
|
| 680 |
-
if
|
| 681 |
-
# Create vertex colors by sampling the image
|
| 682 |
vertex_colors = np.zeros((vertices.shape[0], 4), dtype=np.uint8)
|
| 683 |
|
|
|
|
| 684 |
for i in range(resolution):
|
| 685 |
for j in range(resolution):
|
| 686 |
-
# Calculate image coordinates
|
| 687 |
-
img_x =
|
| 688 |
-
img_y =
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 689 |
|
| 690 |
vertex_idx = i * resolution + j
|
| 691 |
|
| 692 |
if len(img_array.shape) == 3 and img_array.shape[2] == 3: # RGB
|
| 693 |
-
|
| 694 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 695 |
elif len(img_array.shape) == 3 and img_array.shape[2] == 4: # RGBA
|
| 696 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 697 |
else:
|
| 698 |
-
# Handle grayscale
|
| 699 |
-
gray = img_array[
|
| 700 |
-
|
| 701 |
-
|
| 702 |
-
|
| 703 |
-
# Just in case gray is some kind of array
|
| 704 |
-
gray_val = np.mean(gray)
|
| 705 |
-
vertex_colors[vertex_idx] = [gray_val, gray_val, gray_val, 255]
|
| 706 |
|
| 707 |
mesh.visual.vertex_colors = vertex_colors
|
| 708 |
|
| 709 |
# Apply smoothing to get rid of staircase artifacts
|
| 710 |
if detail_level != 'high':
|
| 711 |
-
|
| 712 |
-
|
| 713 |
-
|
| 714 |
-
except Exception as e:
|
| 715 |
-
print(f"Smoothing error (non-critical): {e}")
|
| 716 |
|
| 717 |
-
#
|
| 718 |
-
|
| 719 |
-
mesh.fix_normals()
|
| 720 |
-
except Exception as e:
|
| 721 |
-
print(f"Normal fixing error (non-critical): {e}")
|
| 722 |
-
|
| 723 |
-
# Simulate full 3D by duplicating and flipping the mesh only if detail level is higher
|
| 724 |
-
if detail_level == 'high' and not USE_SIMPLIFIED_MODE:
|
| 725 |
-
try:
|
| 726 |
-
# Create a complete 3D object by duplicating and flipping the mesh
|
| 727 |
-
back_mesh = mesh.copy()
|
| 728 |
-
# Flip to create the back side
|
| 729 |
-
back_mesh.vertices[:, 2] = -back_mesh.vertices[:, 2] - 0.1 # Add small offset to avoid z-fighting
|
| 730 |
-
# Fix normals after flipping
|
| 731 |
-
back_mesh.fix_normals()
|
| 732 |
-
|
| 733 |
-
# Combine front and back meshes
|
| 734 |
-
combined_mesh = trimesh.util.concatenate([mesh, back_mesh])
|
| 735 |
-
|
| 736 |
-
# Add side panels to create a watertight model
|
| 737 |
-
combined_mesh = create_watertight_model(combined_mesh)
|
| 738 |
-
return combined_mesh
|
| 739 |
-
except Exception as e:
|
| 740 |
-
print(f"3D completion error (non-critical): {e}")
|
| 741 |
|
| 742 |
return mesh
|
| 743 |
|
| 744 |
-
# Create a watertight model by adding side panels
|
| 745 |
-
def create_watertight_model(mesh):
|
| 746 |
-
try:
|
| 747 |
-
# Extract boundary edges - simplified approach to avoid errors
|
| 748 |
-
edges = mesh.edges_unique
|
| 749 |
-
edge_faces = mesh.edges_face
|
| 750 |
-
boundary_edges = []
|
| 751 |
-
|
| 752 |
-
# Find edges that are only part of one face (boundaries)
|
| 753 |
-
edge_face_counts = np.bincount(edge_faces.flatten(), minlength=len(mesh.faces))
|
| 754 |
-
boundary_face_indices = np.where(edge_face_counts == 1)[0]
|
| 755 |
-
|
| 756 |
-
# Get boundary edges
|
| 757 |
-
for i, edge in enumerate(edges):
|
| 758 |
-
faces = edge_faces[i]
|
| 759 |
-
if -1 in faces or len(np.unique(faces)) == 1:
|
| 760 |
-
boundary_edges.append(edge)
|
| 761 |
-
|
| 762 |
-
# If no boundary edges, return the original mesh
|
| 763 |
-
if len(boundary_edges) == 0:
|
| 764 |
-
return mesh
|
| 765 |
-
|
| 766 |
-
# Simplify for Hugging Face Space - just return original mesh
|
| 767 |
-
if USE_SIMPLIFIED_MODE:
|
| 768 |
-
return mesh
|
| 769 |
-
|
| 770 |
-
# Create side panels along boundary edges - simplified version
|
| 771 |
-
new_faces = []
|
| 772 |
-
new_vertices = mesh.vertices.copy()
|
| 773 |
-
|
| 774 |
-
# Just add a base and close the model
|
| 775 |
-
min_z = np.min(mesh.vertices[:, 2])
|
| 776 |
-
max_z = np.max(mesh.vertices[:, 2])
|
| 777 |
-
|
| 778 |
-
# Find vertices near the minimum z height
|
| 779 |
-
bottom_vertices = np.where(np.isclose(mesh.vertices[:, 2], min_z, atol=0.1))[0]
|
| 780 |
-
|
| 781 |
-
if len(bottom_vertices) > 3:
|
| 782 |
-
# Create a simple bottom face - simplified approach
|
| 783 |
-
center = np.mean(mesh.vertices[bottom_vertices], axis=0)
|
| 784 |
-
center_idx = len(new_vertices)
|
| 785 |
-
new_vertices = np.vstack([new_vertices, center])
|
| 786 |
-
|
| 787 |
-
# Add triangles connecting the boundary vertices to the center
|
| 788 |
-
for i in range(len(bottom_vertices)-1):
|
| 789 |
-
new_faces.append([bottom_vertices[i], bottom_vertices[i+1], center_idx])
|
| 790 |
-
|
| 791 |
-
# Close the loop
|
| 792 |
-
new_faces.append([bottom_vertices[-1], bottom_vertices[0], center_idx])
|
| 793 |
-
|
| 794 |
-
# Create new mesh with added faces
|
| 795 |
-
if len(new_faces) > 0:
|
| 796 |
-
new_faces = np.array(new_faces)
|
| 797 |
-
combined_faces = np.vstack([mesh.faces, new_faces])
|
| 798 |
-
watertight_mesh = trimesh.Trimesh(vertices=new_vertices, faces=combined_faces)
|
| 799 |
-
|
| 800 |
-
# Copy vertex colors if they exist
|
| 801 |
-
if hasattr(mesh.visual, 'vertex_colors') and mesh.visual.vertex_colors is not None:
|
| 802 |
-
# Extend vertex colors array for new vertices
|
| 803 |
-
extended_colors = np.vstack([
|
| 804 |
-
mesh.visual.vertex_colors,
|
| 805 |
-
np.full((len(new_vertices) - len(mesh.vertices), 4), [200, 200, 200, 255], dtype=np.uint8)
|
| 806 |
-
])
|
| 807 |
-
watertight_mesh.visual.vertex_colors = extended_colors
|
| 808 |
-
|
| 809 |
-
return watertight_mesh
|
| 810 |
-
|
| 811 |
-
return mesh
|
| 812 |
-
except Exception as e:
|
| 813 |
-
print(f"Watertight model creation failed (non-critical): {e}")
|
| 814 |
-
return mesh
|
| 815 |
-
|
| 816 |
@app.route('/health', methods=['GET'])
|
| 817 |
def health_check():
|
| 818 |
return jsonify({
|
| 819 |
"status": "healthy",
|
| 820 |
-
"model": "Enhanced 3D Model Generator",
|
| 821 |
-
"device": "cuda" if torch.cuda.is_available() else "cpu"
|
| 822 |
-
"simplified_mode": USE_SIMPLIFIED_MODE
|
| 823 |
}), 200
|
| 824 |
|
| 825 |
@app.route('/progress/<job_id>', methods=['GET'])
|
|
@@ -845,14 +446,14 @@ def progress(job_id):
|
|
| 845 |
time.sleep(0.5)
|
| 846 |
check_count += 1
|
| 847 |
|
| 848 |
-
#
|
| 849 |
if check_count > 60: # 30 seconds with no updates
|
| 850 |
if 'thread_alive' in job and not job['thread_alive']():
|
| 851 |
job['status'] = 'error'
|
| 852 |
job['error'] = 'Processing thread died unexpectedly'
|
| 853 |
break
|
| 854 |
check_count = 0
|
| 855 |
-
|
| 856 |
# Send final status
|
| 857 |
if job['status'] == 'completed':
|
| 858 |
yield f"data: {json.dumps({'status': 'completed', 'progress': 100, 'result_url': job['result_url'], 'preview_url': job['preview_url']})}\n\n"
|
|
@@ -879,13 +480,7 @@ def convert_image_to_3d():
|
|
| 879 |
mesh_resolution = min(int(request.form.get('mesh_resolution', 100)), 200) # Limit max resolution
|
| 880 |
output_format = request.form.get('output_format', 'obj').lower()
|
| 881 |
detail_level = request.form.get('detail_level', 'medium').lower() # Parameter for detail level
|
| 882 |
-
|
| 883 |
-
|
| 884 |
-
# Adjust parameters for simplified mode
|
| 885 |
-
if USE_SIMPLIFIED_MODE:
|
| 886 |
-
mesh_resolution = min(mesh_resolution, 100) # Lower resolution for simplified mode
|
| 887 |
-
if detail_level == 'high':
|
| 888 |
-
detail_level = 'medium' # Downgrade detail level in simplified mode
|
| 889 |
except ValueError:
|
| 890 |
return jsonify({"error": "Invalid parameter values"}), 400
|
| 891 |
|
|
@@ -893,6 +488,12 @@ def convert_image_to_3d():
|
|
| 893 |
if output_format not in ['obj', 'glb']:
|
| 894 |
return jsonify({"error": "Unsupported output format. Use 'obj' or 'glb'"}), 400
|
| 895 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 896 |
# Create a job ID
|
| 897 |
job_id = str(uuid.uuid4())
|
| 898 |
output_dir = os.path.join(RESULTS_FOLDER, job_id)
|
|
@@ -925,17 +526,58 @@ def convert_image_to_3d():
|
|
| 925 |
image = preprocess_image(filepath)
|
| 926 |
processing_jobs[job_id]['progress'] = 10
|
| 927 |
|
| 928 |
-
#
|
| 929 |
-
|
| 930 |
-
|
| 931 |
-
|
| 932 |
-
|
| 933 |
-
|
| 934 |
-
|
|
|
|
| 935 |
|
| 936 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 937 |
|
| 938 |
-
# Export based on requested format
|
| 939 |
try:
|
| 940 |
if output_format == 'obj':
|
| 941 |
obj_path = os.path.join(output_dir, "model.obj")
|
|
@@ -965,7 +607,7 @@ def convert_image_to_3d():
|
|
| 965 |
processing_jobs[job_id]['preview_url'] = f"/preview/{job_id}"
|
| 966 |
|
| 967 |
elif output_format == 'glb':
|
| 968 |
-
# Export as GLB
|
| 969 |
glb_path = os.path.join(output_dir, "model.glb")
|
| 970 |
mesh.export(
|
| 971 |
glb_path,
|
|
@@ -978,7 +620,6 @@ def convert_image_to_3d():
|
|
| 978 |
# Update job status
|
| 979 |
processing_jobs[job_id]['status'] = 'completed'
|
| 980 |
processing_jobs[job_id]['progress'] = 100
|
| 981 |
-
processing_jobs[job_id]['completed_at'] = time.time()
|
| 982 |
print(f"Job {job_id} completed successfully")
|
| 983 |
except Exception as e:
|
| 984 |
error_details = traceback.format_exc()
|
|
@@ -992,7 +633,9 @@ def convert_image_to_3d():
|
|
| 992 |
os.remove(filepath)
|
| 993 |
|
| 994 |
# Force garbage collection to free memory
|
| 995 |
-
|
|
|
|
|
|
|
| 996 |
|
| 997 |
except Exception as e:
|
| 998 |
# Handle errors
|
|
@@ -1086,7 +729,7 @@ def cleanup_old_jobs():
|
|
| 1086 |
# Schedule the next cleanup
|
| 1087 |
threading.Timer(300, cleanup_old_jobs).start() # Run every 5 minutes
|
| 1088 |
|
| 1089 |
-
#
|
| 1090 |
@app.route('/model-info/<job_id>', methods=['GET'])
|
| 1091 |
def model_info(job_id):
|
| 1092 |
if job_id not in processing_jobs:
|
|
@@ -1135,7 +778,7 @@ def model_info(job_id):
|
|
| 1135 |
@app.route('/', methods=['GET'])
|
| 1136 |
def index():
|
| 1137 |
return jsonify({
|
| 1138 |
-
"message": "Enhanced 3D Model
|
| 1139 |
"endpoints": [
|
| 1140 |
"/convert",
|
| 1141 |
"/progress/<job_id>",
|
|
@@ -1147,54 +790,173 @@ def index():
|
|
| 1147 |
"mesh_resolution": "Integer (50-200), controls mesh density",
|
| 1148 |
"output_format": "obj or glb",
|
| 1149 |
"detail_level": "low, medium, or high - controls the level of detail in the final model",
|
| 1150 |
-
"
|
| 1151 |
},
|
| 1152 |
-
"description": "This API creates high-quality 3D models from 2D images with
|
| 1153 |
-
"simplified_mode": USE_SIMPLIFIED_MODE
|
| 1154 |
}), 200
|
| 1155 |
|
| 1156 |
-
#
|
| 1157 |
-
|
| 1158 |
-
|
| 1159 |
-
|
|
|
|
|
|
|
| 1160 |
|
| 1161 |
-
|
| 1162 |
-
|
| 1163 |
-
|
| 1164 |
-
|
| 1165 |
-
|
| 1166 |
-
|
| 1167 |
-
|
| 1168 |
-
|
| 1169 |
-
|
| 1170 |
-
|
| 1171 |
-
|
| 1172 |
-
|
| 1173 |
-
|
| 1174 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1175 |
try:
|
| 1176 |
-
|
| 1177 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1178 |
except Exception as e:
|
| 1179 |
-
|
| 1180 |
-
|
| 1181 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1182 |
|
| 1183 |
-
#
|
| 1184 |
-
|
| 1185 |
-
|
| 1186 |
-
|
| 1187 |
-
|
| 1188 |
-
|
| 1189 |
-
|
| 1190 |
|
| 1191 |
-
|
| 1192 |
-
|
| 1193 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1194 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1195 |
# Start the cleanup thread
|
| 1196 |
cleanup_old_jobs()
|
| 1197 |
|
| 1198 |
# Use port 7860 which is standard for Hugging Face Spaces
|
| 1199 |
port = int(os.environ.get('PORT', 7860))
|
| 1200 |
-
app.run(host='0.0.0.0', port=port)
|
|
|
|
| 11 |
import zipfile
|
| 12 |
import uuid
|
| 13 |
import traceback
|
| 14 |
+
from huggingface_hub import snapshot_download
|
| 15 |
from flask_cors import CORS
|
| 16 |
import numpy as np
|
| 17 |
import trimesh
|
| 18 |
+
from transformers import pipeline
|
| 19 |
+
from scipy.ndimage import gaussian_filter, uniform_filter, median_filter
|
| 20 |
+
from scipy import interpolate
|
| 21 |
import cv2
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
|
| 23 |
app = Flask(__name__)
|
| 24 |
CORS(app) # Enable CORS for all routes
|
|
|
|
| 38 |
os.environ['HF_HOME'] = CACHE_DIR
|
| 39 |
os.environ['TRANSFORMERS_CACHE'] = os.path.join(CACHE_DIR, 'transformers')
|
| 40 |
os.environ['HF_DATASETS_CACHE'] = os.path.join(CACHE_DIR, 'datasets')
|
|
|
|
| 41 |
|
| 42 |
app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER
|
| 43 |
app.config['MAX_CONTENT_LENGTH'] = 16 * 1024 * 1024 # 16MB max
|
|
|
|
| 46 |
processing_jobs = {}
|
| 47 |
|
| 48 |
# Global model variables
|
| 49 |
+
depth_estimator = None
|
|
|
|
|
|
|
| 50 |
model_loaded = False
|
| 51 |
model_loading = False
|
| 52 |
|
| 53 |
+
# Configuration for processing
|
|
|
|
|
|
|
|
|
|
| 54 |
TIMEOUT_SECONDS = 240 # 4 minutes max for processing
|
| 55 |
MAX_DIMENSION = 512 # Max image dimension to process
|
| 56 |
|
|
|
|
| 88 |
|
| 89 |
return result[0], None
|
| 90 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 91 |
def allowed_file(filename):
|
| 92 |
return '.' in filename and filename.rsplit('.', 1)[1].lower() in ALLOWED_EXTENSIONS
|
| 93 |
|
| 94 |
+
# Enhanced image preprocessing with better detail preservation
|
| 95 |
def preprocess_image(image_path):
|
| 96 |
with Image.open(image_path) as img:
|
| 97 |
img = img.convert("RGB")
|
|
|
|
| 106 |
new_height = MAX_DIMENSION
|
| 107 |
new_width = int(img.width * (MAX_DIMENSION / img.height))
|
| 108 |
|
| 109 |
+
# Use high-quality Lanczos resampling for better detail preservation
|
| 110 |
img = img.resize((new_width, new_height), Image.LANCZOS)
|
| 111 |
|
| 112 |
# Convert to numpy array for additional preprocessing
|
| 113 |
img_array = np.array(img)
|
| 114 |
|
| 115 |
+
# Optional: Apply adaptive histogram equalization for better contrast
|
| 116 |
+
# This helps the depth model detect more details
|
| 117 |
if len(img_array.shape) == 3 and img_array.shape[2] == 3:
|
| 118 |
# Convert to LAB color space
|
| 119 |
lab = cv2.cvtColor(img_array, cv2.COLOR_RGB2LAB)
|
|
|
|
| 134 |
|
| 135 |
return img
|
| 136 |
|
| 137 |
+
def load_model():
|
| 138 |
+
global depth_estimator, model_loaded, model_loading
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 139 |
|
| 140 |
+
if model_loaded:
|
| 141 |
+
return depth_estimator
|
| 142 |
|
| 143 |
if model_loading:
|
| 144 |
# Wait for model to load if it's already in progress
|
| 145 |
while model_loading and not model_loaded:
|
| 146 |
time.sleep(0.5)
|
| 147 |
+
return depth_estimator
|
| 148 |
|
| 149 |
try:
|
| 150 |
model_loading = True
|
| 151 |
+
print("Starting model loading...")
|
| 152 |
|
| 153 |
+
# Using DPT-Large which provides better detail than DPT-Hybrid
|
| 154 |
+
# Alternatively, consider "vinvino02/glpn-nyu" for different detail characteristics
|
| 155 |
+
model_name = "Intel/dpt-large"
|
| 156 |
|
| 157 |
+
# Download model with retry mechanism
|
| 158 |
+
max_retries = 3
|
| 159 |
+
retry_delay = 5
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 160 |
|
| 161 |
+
for attempt in range(max_retries):
|
| 162 |
+
try:
|
| 163 |
+
snapshot_download(
|
| 164 |
+
repo_id=model_name,
|
| 165 |
+
cache_dir=CACHE_DIR,
|
| 166 |
+
resume_download=True,
|
| 167 |
+
)
|
| 168 |
+
break
|
| 169 |
+
except Exception as e:
|
| 170 |
+
if attempt < max_retries - 1:
|
| 171 |
+
print(f"Download attempt {attempt+1} failed: {str(e)}. Retrying in {retry_delay} seconds...")
|
| 172 |
+
time.sleep(retry_delay)
|
| 173 |
+
retry_delay *= 2
|
| 174 |
+
else:
|
| 175 |
+
raise
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 176 |
|
| 177 |
+
# Initialize model with appropriate precision
|
| 178 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 179 |
|
| 180 |
+
# Load depth estimator pipeline
|
| 181 |
+
depth_estimator = pipeline(
|
| 182 |
+
"depth-estimation",
|
| 183 |
+
model=model_name,
|
| 184 |
+
device=device if device == "cuda" else -1,
|
| 185 |
+
cache_dir=CACHE_DIR
|
| 186 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 187 |
|
| 188 |
+
# Optimize memory usage
|
| 189 |
if device == "cuda":
|
| 190 |
+
torch.cuda.empty_cache()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 191 |
|
| 192 |
+
model_loaded = True
|
| 193 |
+
print(f"Model loaded successfully on {device}")
|
| 194 |
+
return depth_estimator
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 195 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 196 |
except Exception as e:
|
| 197 |
+
print(f"Error loading model: {str(e)}")
|
| 198 |
print(traceback.format_exc())
|
| 199 |
+
raise
|
| 200 |
+
finally:
|
| 201 |
+
model_loading = False
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 202 |
|
| 203 |
+
# Enhanced depth processing function to improve detail quality
|
| 204 |
def enhance_depth_map(depth_map, detail_level='medium'):
|
| 205 |
"""Apply sophisticated processing to enhance depth map details"""
|
| 206 |
# Convert to numpy array if needed
|
|
|
|
| 214 |
# Create a copy for processing
|
| 215 |
enhanced_depth = depth_map.copy().astype(np.float32)
|
| 216 |
|
| 217 |
+
# Remove outliers using percentile clipping (more stable than min/max)
|
| 218 |
p_low, p_high = np.percentile(enhanced_depth, [1, 99])
|
| 219 |
enhanced_depth = np.clip(enhanced_depth, p_low, p_high)
|
| 220 |
|
|
|
|
| 223 |
|
| 224 |
# Apply different enhancement methods based on detail level
|
| 225 |
if detail_level == 'high':
|
| 226 |
+
# Apply unsharp masking for edge enhancement - simulating Hunyuan's detail technique
|
| 227 |
+
# First apply gaussian blur
|
| 228 |
blurred = gaussian_filter(enhanced_depth, sigma=1.5)
|
| 229 |
+
# Create the unsharp mask
|
| 230 |
mask = enhanced_depth - blurred
|
| 231 |
+
# Apply the mask with strength factor
|
| 232 |
enhanced_depth = enhanced_depth + 1.5 * mask
|
| 233 |
|
| 234 |
+
# Apply bilateral filter to preserve edges while smoothing noise
|
| 235 |
+
# Simulate using gaussian combinations
|
| 236 |
smooth1 = gaussian_filter(enhanced_depth, sigma=0.5)
|
| 237 |
smooth2 = gaussian_filter(enhanced_depth, sigma=2.0)
|
| 238 |
edge_mask = enhanced_depth - smooth2
|
| 239 |
enhanced_depth = smooth1 + 1.2 * edge_mask
|
| 240 |
|
| 241 |
elif detail_level == 'medium':
|
| 242 |
+
# Less aggressive but still effective enhancement
|
| 243 |
+
# Apply mild unsharp masking
|
| 244 |
blurred = gaussian_filter(enhanced_depth, sigma=1.0)
|
| 245 |
mask = enhanced_depth - blurred
|
| 246 |
enhanced_depth = enhanced_depth + 0.8 * mask
|
| 247 |
+
|
| 248 |
+
# Apply mild smoothing to reduce noise but preserve edges
|
| 249 |
enhanced_depth = gaussian_filter(enhanced_depth, sigma=0.5)
|
| 250 |
|
| 251 |
else: # low
|
| 252 |
+
# Just apply noise reduction without too much detail enhancement
|
| 253 |
enhanced_depth = gaussian_filter(enhanced_depth, sigma=0.7)
|
| 254 |
|
| 255 |
# Normalize again after processing
|
|
|
|
| 257 |
|
| 258 |
return enhanced_depth
|
| 259 |
|
| 260 |
+
# Convert depth map to 3D mesh with significantly enhanced detail
|
| 261 |
def depth_to_mesh(depth_map, image, resolution=100, detail_level='medium'):
|
| 262 |
+
"""Convert depth map to 3D mesh with highly improved detail preservation"""
|
| 263 |
# First, enhance the depth map for better details
|
| 264 |
enhanced_depth = enhance_depth_map(depth_map, detail_level)
|
| 265 |
|
|
|
|
| 271 |
y = np.linspace(0, h-1, resolution)
|
| 272 |
x_grid, y_grid = np.meshgrid(x, y)
|
| 273 |
|
| 274 |
+
# Use bicubic interpolation for smoother surface with better details
|
| 275 |
+
# Create interpolation function
|
| 276 |
interp_func = interpolate.RectBivariateSpline(
|
| 277 |
np.arange(h), np.arange(w), enhanced_depth, kx=3, ky=3
|
| 278 |
)
|
| 279 |
+
|
| 280 |
+
# Sample depth at grid points with the interpolation function
|
| 281 |
z_values = interp_func(y, x, grid=True)
|
| 282 |
|
| 283 |
+
# Apply a post-processing step to enhance small details even further
|
| 284 |
+
if detail_level == 'high':
|
| 285 |
+
# Calculate local gradients to detect edges
|
| 286 |
+
dx = np.gradient(z_values, axis=1)
|
| 287 |
+
dy = np.gradient(z_values, axis=0)
|
| 288 |
+
|
| 289 |
+
# Enhance edges by increasing depth differences at high gradient areas
|
| 290 |
+
gradient_magnitude = np.sqrt(dx**2 + dy**2)
|
| 291 |
+
edge_mask = np.clip(gradient_magnitude * 5, 0, 0.2) # Scale and limit effect
|
| 292 |
+
|
| 293 |
+
# Apply edge enhancement
|
| 294 |
+
z_values = z_values + edge_mask * (z_values - gaussian_filter(z_values, sigma=1.0))
|
| 295 |
+
|
| 296 |
+
# Normalize z-values with advanced scaling for better depth impression
|
| 297 |
+
z_min, z_max = np.percentile(z_values, [2, 98]) # Remove outliers
|
| 298 |
+
z_values = (z_values - z_min) / (z_max - z_min) if z_max > z_min else z_values
|
| 299 |
+
|
| 300 |
# Apply depth scaling appropriate to the detail level
|
| 301 |
if detail_level == 'high':
|
| 302 |
+
z_scaling = 2.5 # More pronounced depth variations
|
| 303 |
elif detail_level == 'medium':
|
| 304 |
z_scaling = 2.0 # Standard depth
|
| 305 |
else:
|
| 306 |
+
z_scaling = 1.5 # More subtle depth variations
|
| 307 |
|
| 308 |
z_values = z_values * z_scaling
|
| 309 |
|
| 310 |
+
# Normalize x and y coordinates
|
| 311 |
x_grid = (x_grid / w - 0.5) * 2.0 # Map to -1 to 1
|
| 312 |
y_grid = (y_grid / h - 0.5) * 2.0 # Map to -1 to 1
|
| 313 |
|
| 314 |
# Create vertices
|
| 315 |
vertices = np.vstack([x_grid.flatten(), -y_grid.flatten(), -z_values.flatten()]).T
|
| 316 |
|
| 317 |
+
# Create faces (triangles) with optimized winding for better normals
|
| 318 |
faces = []
|
| 319 |
for i in range(resolution-1):
|
| 320 |
for j in range(resolution-1):
|
|
|
|
| 323 |
p3 = (i + 1) * resolution + j
|
| 324 |
p4 = (i + 1) * resolution + (j + 1)
|
| 325 |
|
| 326 |
+
# Calculate normals to ensure consistent orientation
|
| 327 |
+
v1 = vertices[p1]
|
| 328 |
+
v2 = vertices[p2]
|
| 329 |
+
v3 = vertices[p3]
|
| 330 |
+
v4 = vertices[p4]
|
| 331 |
+
|
| 332 |
+
# Calculate normals for both possible triangulations
|
| 333 |
+
# and choose the one that's more consistent
|
| 334 |
+
norm1 = np.cross(v2-v1, v4-v1)
|
| 335 |
+
norm2 = np.cross(v4-v3, v1-v3)
|
| 336 |
+
|
| 337 |
+
if np.dot(norm1, norm2) >= 0:
|
| 338 |
+
# Standard triangulation
|
| 339 |
+
faces.append([p1, p2, p4])
|
| 340 |
+
faces.append([p1, p4, p3])
|
| 341 |
+
else:
|
| 342 |
+
# Alternative triangulation for smoother surface
|
| 343 |
+
faces.append([p1, p2, p3])
|
| 344 |
+
faces.append([p2, p4, p3])
|
| 345 |
|
| 346 |
faces = np.array(faces)
|
| 347 |
|
| 348 |
# Create mesh
|
| 349 |
mesh = trimesh.Trimesh(vertices=vertices, faces=faces)
|
| 350 |
|
| 351 |
+
# Apply advanced texturing if image is provided
|
| 352 |
+
if image:
|
| 353 |
# Convert to numpy array if needed
|
| 354 |
if isinstance(image, Image.Image):
|
| 355 |
img_array = np.array(image)
|
| 356 |
else:
|
| 357 |
img_array = image
|
| 358 |
|
| 359 |
+
# Create vertex colors with improved sampling
|
| 360 |
+
if resolution <= img_array.shape[0] and resolution <= img_array.shape[1]:
|
| 361 |
+
# Create vertex colors by sampling the image with bilinear interpolation
|
| 362 |
vertex_colors = np.zeros((vertices.shape[0], 4), dtype=np.uint8)
|
| 363 |
|
| 364 |
+
# Get normalized coordinates for sampling
|
| 365 |
for i in range(resolution):
|
| 366 |
for j in range(resolution):
|
| 367 |
+
# Calculate exact image coordinates with proper scaling
|
| 368 |
+
img_x = j * (img_array.shape[1] - 1) / (resolution - 1)
|
| 369 |
+
img_y = i * (img_array.shape[0] - 1) / (resolution - 1)
|
| 370 |
+
|
| 371 |
+
# Bilinear interpolation for smooth color transitions
|
| 372 |
+
x0, y0 = int(img_x), int(img_y)
|
| 373 |
+
x1, y1 = min(x0 + 1, img_array.shape[1] - 1), min(y0 + 1, img_array.shape[0] - 1)
|
| 374 |
+
|
| 375 |
+
# Calculate interpolation weights
|
| 376 |
+
wx = img_x - x0
|
| 377 |
+
wy = img_y - y0
|
| 378 |
|
| 379 |
vertex_idx = i * resolution + j
|
| 380 |
|
| 381 |
if len(img_array.shape) == 3 and img_array.shape[2] == 3: # RGB
|
| 382 |
+
# Perform bilinear interpolation for each color channel
|
| 383 |
+
r = int((1-wx)*(1-wy)*img_array[y0, x0, 0] + wx*(1-wy)*img_array[y0, x1, 0] +
|
| 384 |
+
(1-wx)*wy*img_array[y1, x0, 0] + wx*wy*img_array[y1, x1, 0])
|
| 385 |
+
g = int((1-wx)*(1-wy)*img_array[y0, x0, 1] + wx*(1-wy)*img_array[y0, x1, 1] +
|
| 386 |
+
(1-wx)*wy*img_array[y1, x0, 1] + wx*wy*img_array[y1, x1, 1])
|
| 387 |
+
b = int((1-wx)*(1-wy)*img_array[y0, x0, 2] + wx*(1-wy)*img_array[y0, x1, 2] +
|
| 388 |
+
(1-wx)*wy*img_array[y1, x0, 2] + wx*wy*img_array[y1, x1, 2])
|
| 389 |
+
|
| 390 |
+
vertex_colors[vertex_idx, :3] = [r, g, b]
|
| 391 |
+
vertex_colors[vertex_idx, 3] = 255 # Alpha
|
| 392 |
elif len(img_array.shape) == 3 and img_array.shape[2] == 4: # RGBA
|
| 393 |
+
for c in range(4): # For each RGBA channel
|
| 394 |
+
vertex_colors[vertex_idx, c] = int((1-wx)*(1-wy)*img_array[y0, x0, c] +
|
| 395 |
+
wx*(1-wy)*img_array[y0, x1, c] +
|
| 396 |
+
(1-wx)*wy*img_array[y1, x0, c] +
|
| 397 |
+
wx*wy*img_array[y1, x1, c])
|
| 398 |
else:
|
| 399 |
+
# Handle grayscale with bilinear interpolation
|
| 400 |
+
gray = int((1-wx)*(1-wy)*img_array[y0, x0] + wx*(1-wy)*img_array[y0, x1] +
|
| 401 |
+
(1-wx)*wy*img_array[y1, x0] + wx*wy*img_array[y1, x1])
|
| 402 |
+
vertex_colors[vertex_idx, :3] = [gray, gray, gray]
|
| 403 |
+
vertex_colors[vertex_idx, 3] = 255
|
|
|
|
|
|
|
|
|
|
| 404 |
|
| 405 |
mesh.visual.vertex_colors = vertex_colors
|
| 406 |
|
| 407 |
# Apply smoothing to get rid of staircase artifacts
|
| 408 |
if detail_level != 'high':
|
| 409 |
+
# For medium and low detail, apply Laplacian smoothing
|
| 410 |
+
# but preserve the overall shape
|
| 411 |
+
mesh = mesh.smoothed(method='laplacian', iterations=1)
|
|
|
|
|
|
|
| 412 |
|
| 413 |
+
# Calculate and fix normals for better rendering
|
| 414 |
+
mesh.fix_normals()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 415 |
|
| 416 |
return mesh
|
| 417 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 418 |
@app.route('/health', methods=['GET'])
|
| 419 |
def health_check():
|
| 420 |
return jsonify({
|
| 421 |
"status": "healthy",
|
| 422 |
+
"model": "Enhanced Depth-Based 3D Model Generator (DPT-Large)",
|
| 423 |
+
"device": "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
|
| 424 |
}), 200
|
| 425 |
|
| 426 |
@app.route('/progress/<job_id>', methods=['GET'])
|
|
|
|
| 446 |
time.sleep(0.5)
|
| 447 |
check_count += 1
|
| 448 |
|
| 449 |
+
# If client hasn't received updates for a while, check if job is still running
|
| 450 |
if check_count > 60: # 30 seconds with no updates
|
| 451 |
if 'thread_alive' in job and not job['thread_alive']():
|
| 452 |
job['status'] = 'error'
|
| 453 |
job['error'] = 'Processing thread died unexpectedly'
|
| 454 |
break
|
| 455 |
check_count = 0
|
| 456 |
+
|
| 457 |
# Send final status
|
| 458 |
if job['status'] == 'completed':
|
| 459 |
yield f"data: {json.dumps({'status': 'completed', 'progress': 100, 'result_url': job['result_url'], 'preview_url': job['preview_url']})}\n\n"
|
|
|
|
| 480 |
mesh_resolution = min(int(request.form.get('mesh_resolution', 100)), 200) # Limit max resolution
|
| 481 |
output_format = request.form.get('output_format', 'obj').lower()
|
| 482 |
detail_level = request.form.get('detail_level', 'medium').lower() # Parameter for detail level
|
| 483 |
+
texture_quality = request.form.get('texture_quality', 'medium').lower() # New parameter for texture quality
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 484 |
except ValueError:
|
| 485 |
return jsonify({"error": "Invalid parameter values"}), 400
|
| 486 |
|
|
|
|
| 488 |
if output_format not in ['obj', 'glb']:
|
| 489 |
return jsonify({"error": "Unsupported output format. Use 'obj' or 'glb'"}), 400
|
| 490 |
|
| 491 |
+
# Adjust mesh resolution based on detail level
|
| 492 |
+
if detail_level == 'high':
|
| 493 |
+
mesh_resolution = min(int(mesh_resolution * 1.5), 200)
|
| 494 |
+
elif detail_level == 'low':
|
| 495 |
+
mesh_resolution = max(int(mesh_resolution * 0.7), 50)
|
| 496 |
+
|
| 497 |
# Create a job ID
|
| 498 |
job_id = str(uuid.uuid4())
|
| 499 |
output_dir = os.path.join(RESULTS_FOLDER, job_id)
|
|
|
|
| 526 |
image = preprocess_image(filepath)
|
| 527 |
processing_jobs[job_id]['progress'] = 10
|
| 528 |
|
| 529 |
+
# Load model
|
| 530 |
+
try:
|
| 531 |
+
model = load_model()
|
| 532 |
+
processing_jobs[job_id]['progress'] = 30
|
| 533 |
+
except Exception as e:
|
| 534 |
+
processing_jobs[job_id]['status'] = 'error'
|
| 535 |
+
processing_jobs[job_id]['error'] = f"Error loading model: {str(e)}"
|
| 536 |
+
return
|
| 537 |
|
| 538 |
+
# Process image with thread-safe timeout
|
| 539 |
+
try:
|
| 540 |
+
def estimate_depth():
|
| 541 |
+
# Get depth map
|
| 542 |
+
result = model(image)
|
| 543 |
+
depth_map = result["depth"]
|
| 544 |
+
|
| 545 |
+
# Convert to numpy array if needed
|
| 546 |
+
if isinstance(depth_map, torch.Tensor):
|
| 547 |
+
depth_map = depth_map.cpu().numpy()
|
| 548 |
+
elif hasattr(depth_map, 'numpy'):
|
| 549 |
+
depth_map = depth_map.numpy()
|
| 550 |
+
elif isinstance(depth_map, Image.Image):
|
| 551 |
+
depth_map = np.array(depth_map)
|
| 552 |
+
|
| 553 |
+
return depth_map
|
| 554 |
+
|
| 555 |
+
depth_map, error = process_with_timeout(estimate_depth, [], TIMEOUT_SECONDS)
|
| 556 |
+
|
| 557 |
+
if error:
|
| 558 |
+
if isinstance(error, TimeoutError):
|
| 559 |
+
processing_jobs[job_id]['status'] = 'error'
|
| 560 |
+
processing_jobs[job_id]['error'] = f"Processing timed out after {TIMEOUT_SECONDS} seconds"
|
| 561 |
+
return
|
| 562 |
+
else:
|
| 563 |
+
raise error
|
| 564 |
+
|
| 565 |
+
processing_jobs[job_id]['progress'] = 60
|
| 566 |
+
|
| 567 |
+
# Create mesh from depth map with enhanced detail handling
|
| 568 |
+
mesh_resolution_int = int(mesh_resolution)
|
| 569 |
+
mesh = depth_to_mesh(depth_map, image, resolution=mesh_resolution_int, detail_level=detail_level)
|
| 570 |
+
processing_jobs[job_id]['progress'] = 80
|
| 571 |
+
|
| 572 |
+
except Exception as e:
|
| 573 |
+
error_details = traceback.format_exc()
|
| 574 |
+
processing_jobs[job_id]['status'] = 'error'
|
| 575 |
+
processing_jobs[job_id]['error'] = f"Error during processing: {str(e)}"
|
| 576 |
+
print(f"Error processing job {job_id}: {str(e)}")
|
| 577 |
+
print(error_details)
|
| 578 |
+
return
|
| 579 |
|
| 580 |
+
# Export based on requested format with enhanced quality settings
|
| 581 |
try:
|
| 582 |
if output_format == 'obj':
|
| 583 |
obj_path = os.path.join(output_dir, "model.obj")
|
|
|
|
| 607 |
processing_jobs[job_id]['preview_url'] = f"/preview/{job_id}"
|
| 608 |
|
| 609 |
elif output_format == 'glb':
|
| 610 |
+
# Export as GLB with enhanced settings
|
| 611 |
glb_path = os.path.join(output_dir, "model.glb")
|
| 612 |
mesh.export(
|
| 613 |
glb_path,
|
|
|
|
| 620 |
# Update job status
|
| 621 |
processing_jobs[job_id]['status'] = 'completed'
|
| 622 |
processing_jobs[job_id]['progress'] = 100
|
|
|
|
| 623 |
print(f"Job {job_id} completed successfully")
|
| 624 |
except Exception as e:
|
| 625 |
error_details = traceback.format_exc()
|
|
|
|
| 633 |
os.remove(filepath)
|
| 634 |
|
| 635 |
# Force garbage collection to free memory
|
| 636 |
+
gc.collect()
|
| 637 |
+
if torch.cuda.is_available():
|
| 638 |
+
torch.cuda.empty_cache()
|
| 639 |
|
| 640 |
except Exception as e:
|
| 641 |
# Handle errors
|
|
|
|
| 729 |
# Schedule the next cleanup
|
| 730 |
threading.Timer(300, cleanup_old_jobs).start() # Run every 5 minutes
|
| 731 |
|
| 732 |
+
# New endpoint to get detailed information about a model
|
| 733 |
@app.route('/model-info/<job_id>', methods=['GET'])
|
| 734 |
def model_info(job_id):
|
| 735 |
if job_id not in processing_jobs:
|
|
|
|
| 778 |
@app.route('/', methods=['GET'])
|
| 779 |
def index():
|
| 780 |
return jsonify({
|
| 781 |
+
"message": "Enhanced Image to 3D API (DPT-Large Model)",
|
| 782 |
"endpoints": [
|
| 783 |
"/convert",
|
| 784 |
"/progress/<job_id>",
|
|
|
|
| 790 |
"mesh_resolution": "Integer (50-200), controls mesh density",
|
| 791 |
"output_format": "obj or glb",
|
| 792 |
"detail_level": "low, medium, or high - controls the level of detail in the final model",
|
| 793 |
+
"texture_quality": "low, medium, or high - controls the quality of textures"
|
| 794 |
},
|
| 795 |
+
"description": "This API creates high-quality 3D models from 2D images with enhanced detail finishing similar to Hunyuan model"
|
|
|
|
| 796 |
}), 200
|
| 797 |
|
| 798 |
+
# Example endpoint showing how to compare different detail levels
|
| 799 |
+
@app.route('/detail-comparison', methods=['POST'])
|
| 800 |
+
def compare_detail_levels():
|
| 801 |
+
# Check if image is in the request
|
| 802 |
+
if 'image' not in request.files:
|
| 803 |
+
return jsonify({"error": "No image provided"}), 400
|
| 804 |
|
| 805 |
+
file = request.files['image']
|
| 806 |
+
if file.filename == '':
|
| 807 |
+
return jsonify({"error": "No image selected"}), 400
|
| 808 |
+
|
| 809 |
+
if not allowed_file(file.filename):
|
| 810 |
+
return jsonify({"error": f"File type not allowed. Supported types: {', '.join(ALLOWED_EXTENSIONS)}"}), 400
|
| 811 |
+
|
| 812 |
+
# Create a job ID
|
| 813 |
+
job_id = str(uuid.uuid4())
|
| 814 |
+
output_dir = os.path.join(RESULTS_FOLDER, job_id)
|
| 815 |
+
os.makedirs(output_dir, exist_ok=True)
|
| 816 |
+
|
| 817 |
+
# Save the uploaded file
|
| 818 |
+
filename = secure_filename(file.filename)
|
| 819 |
+
filepath = os.path.join(app.config['UPLOAD_FOLDER'], f"{job_id}_{filename}")
|
| 820 |
+
file.save(filepath)
|
| 821 |
+
|
| 822 |
+
# Initialize job tracking
|
| 823 |
+
processing_jobs[job_id] = {
|
| 824 |
+
'status': 'processing',
|
| 825 |
+
'progress': 0,
|
| 826 |
+
'result_url': None,
|
| 827 |
+
'preview_url': None,
|
| 828 |
+
'error': None,
|
| 829 |
+
'output_format': 'glb', # Use GLB for comparison
|
| 830 |
+
'created_at': time.time(),
|
| 831 |
+
'comparison': True
|
| 832 |
+
}
|
| 833 |
+
|
| 834 |
+
# Process in separate thread to create 3 different detail levels
|
| 835 |
+
def process_comparison():
|
| 836 |
+
thread = threading.current_thread()
|
| 837 |
+
processing_jobs[job_id]['thread_alive'] = lambda: thread.is_alive()
|
| 838 |
+
|
| 839 |
try:
|
| 840 |
+
# Preprocess image
|
| 841 |
+
image = preprocess_image(filepath)
|
| 842 |
+
processing_jobs[job_id]['progress'] = 10
|
| 843 |
+
|
| 844 |
+
# Load model
|
| 845 |
+
try:
|
| 846 |
+
model = load_model()
|
| 847 |
+
processing_jobs[job_id]['progress'] = 20
|
| 848 |
+
except Exception as e:
|
| 849 |
+
processing_jobs[job_id]['status'] = 'error'
|
| 850 |
+
processing_jobs[job_id]['error'] = f"Error loading model: {str(e)}"
|
| 851 |
+
return
|
| 852 |
+
|
| 853 |
+
# Process image to get depth map
|
| 854 |
+
try:
|
| 855 |
+
depth_map = model(image)["depth"]
|
| 856 |
+
if isinstance(depth_map, torch.Tensor):
|
| 857 |
+
depth_map = depth_map.cpu().numpy()
|
| 858 |
+
elif hasattr(depth_map, 'numpy'):
|
| 859 |
+
depth_map = depth_map.numpy()
|
| 860 |
+
elif isinstance(depth_map, Image.Image):
|
| 861 |
+
depth_map = np.array(depth_map)
|
| 862 |
+
|
| 863 |
+
processing_jobs[job_id]['progress'] = 40
|
| 864 |
+
except Exception as e:
|
| 865 |
+
processing_jobs[job_id]['status'] = 'error'
|
| 866 |
+
processing_jobs[job_id]['error'] = f"Error estimating depth: {str(e)}"
|
| 867 |
+
return
|
| 868 |
+
|
| 869 |
+
# Create meshes at different detail levels
|
| 870 |
+
result_urls = {}
|
| 871 |
+
|
| 872 |
+
for detail_level in ['low', 'medium', 'high']:
|
| 873 |
+
try:
|
| 874 |
+
# Update progress
|
| 875 |
+
if detail_level == 'low':
|
| 876 |
+
processing_jobs[job_id]['progress'] = 50
|
| 877 |
+
elif detail_level == 'medium':
|
| 878 |
+
processing_jobs[job_id]['progress'] = 70
|
| 879 |
+
else:
|
| 880 |
+
processing_jobs[job_id]['progress'] = 90
|
| 881 |
+
|
| 882 |
+
# Create mesh with appropriate detail level
|
| 883 |
+
mesh_resolution = 100 # Fixed resolution for fair comparison
|
| 884 |
+
if detail_level == 'high':
|
| 885 |
+
mesh_resolution = 150
|
| 886 |
+
elif detail_level == 'low':
|
| 887 |
+
mesh_resolution = 80
|
| 888 |
+
|
| 889 |
+
mesh = depth_to_mesh(depth_map, image,
|
| 890 |
+
resolution=mesh_resolution,
|
| 891 |
+
detail_level=detail_level)
|
| 892 |
+
|
| 893 |
+
# Export as GLB
|
| 894 |
+
model_path = os.path.join(output_dir, f"model_{detail_level}.glb")
|
| 895 |
+
mesh.export(model_path, file_type='glb')
|
| 896 |
+
|
| 897 |
+
# Add to result URLs
|
| 898 |
+
result_urls[detail_level] = f"/compare-download/{job_id}/{detail_level}"
|
| 899 |
+
|
| 900 |
+
except Exception as e:
|
| 901 |
+
print(f"Error processing {detail_level} detail level: {str(e)}")
|
| 902 |
+
# Continue with other detail levels even if one fails
|
| 903 |
+
|
| 904 |
+
# Update job status
|
| 905 |
+
processing_jobs[job_id]['status'] = 'completed'
|
| 906 |
+
processing_jobs[job_id]['progress'] = 100
|
| 907 |
+
processing_jobs[job_id]['result_urls'] = result_urls
|
| 908 |
+
processing_jobs[job_id]['completed_at'] = time.time()
|
| 909 |
+
|
| 910 |
+
# Clean up temporary file
|
| 911 |
+
if os.path.exists(filepath):
|
| 912 |
+
os.remove(filepath)
|
| 913 |
+
|
| 914 |
+
# Force garbage collection
|
| 915 |
+
gc.collect()
|
| 916 |
+
if torch.cuda.is_available():
|
| 917 |
+
torch.cuda.empty_cache()
|
| 918 |
+
|
| 919 |
except Exception as e:
|
| 920 |
+
# Handle errors
|
| 921 |
+
processing_jobs[job_id]['status'] = 'error'
|
| 922 |
+
processing_jobs[job_id]['error'] = f"Error during processing: {str(e)}"
|
| 923 |
+
|
| 924 |
+
# Clean up on error
|
| 925 |
+
if os.path.exists(filepath):
|
| 926 |
+
os.remove(filepath)
|
| 927 |
|
| 928 |
+
# Start processing thread
|
| 929 |
+
processing_thread = threading.Thread(target=process_comparison)
|
| 930 |
+
processing_thread.daemon = True
|
| 931 |
+
processing_thread.start()
|
| 932 |
+
|
| 933 |
+
# Return job ID immediately
|
| 934 |
+
return jsonify({"job_id": job_id, "check_progress_at": f"/progress/{job_id}"}), 202
|
| 935 |
|
| 936 |
+
@app.route('/compare-download/<job_id>/<detail_level>', methods=['GET'])
|
| 937 |
+
def download_comparison_model(job_id, detail_level):
|
| 938 |
+
if job_id not in processing_jobs or processing_jobs[job_id]['status'] != 'completed':
|
| 939 |
+
return jsonify({"error": "Model not found or processing not complete"}), 404
|
| 940 |
+
|
| 941 |
+
if 'comparison' not in processing_jobs[job_id] or not processing_jobs[job_id]['comparison']:
|
| 942 |
+
return jsonify({"error": "This is not a comparison job"}), 400
|
| 943 |
+
|
| 944 |
+
if detail_level not in ['low', 'medium', 'high']:
|
| 945 |
+
return jsonify({"error": "Invalid detail level"}), 400
|
| 946 |
|
| 947 |
+
# Get the output directory for this job
|
| 948 |
+
output_dir = os.path.join(RESULTS_FOLDER, job_id)
|
| 949 |
+
model_path = os.path.join(output_dir, f"model_{detail_level}.glb")
|
| 950 |
+
|
| 951 |
+
if os.path.exists(model_path):
|
| 952 |
+
return send_file(model_path, as_attachment=True, download_name=f"model_{detail_level}.glb")
|
| 953 |
+
|
| 954 |
+
return jsonify({"error": "File not found"}), 404
|
| 955 |
+
|
| 956 |
+
if __name__ == '__main__':
|
| 957 |
# Start the cleanup thread
|
| 958 |
cleanup_old_jobs()
|
| 959 |
|
| 960 |
# Use port 7860 which is standard for Hugging Face Spaces
|
| 961 |
port = int(os.environ.get('PORT', 7860))
|
| 962 |
+
app.run(host='0.0.0.0', port=port)
|