Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,172 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import torch
|
| 3 |
+
from flask import Flask, request, jsonify, send_file
|
| 4 |
+
from werkzeug.utils import secure_filename
|
| 5 |
+
from PIL import Image
|
| 6 |
+
import io
|
| 7 |
+
import zipfile
|
| 8 |
+
from diffusers import ShapEImg2ImgPipeline
|
| 9 |
+
from diffusers.utils import export_to_obj
|
| 10 |
+
|
| 11 |
+
app = Flask(__name__)
|
| 12 |
+
|
| 13 |
+
# Configure upload folder
|
| 14 |
+
UPLOAD_FOLDER = 'uploads'
|
| 15 |
+
RESULTS_FOLDER = 'results'
|
| 16 |
+
ALLOWED_EXTENSIONS = {'png', 'jpg', 'jpeg'}
|
| 17 |
+
|
| 18 |
+
os.makedirs(UPLOAD_FOLDER, exist_ok=True)
|
| 19 |
+
os.makedirs(RESULTS_FOLDER, exist_ok=True)
|
| 20 |
+
|
| 21 |
+
app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER
|
| 22 |
+
app.config['MAX_CONTENT_LENGTH'] = 16 * 1024 * 1024 # 16MB max
|
| 23 |
+
|
| 24 |
+
# Initialize the model (will download on first run)
|
| 25 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 26 |
+
pipe = ShapEImg2ImgPipeline.from_pretrained("openai/shap-e-img2img", torch_dtype=torch.float16)
|
| 27 |
+
pipe = pipe.to(device)
|
| 28 |
+
|
| 29 |
+
def allowed_file(filename):
|
| 30 |
+
return '.' in filename and filename.rsplit('.', 1)[1].lower() in ALLOWED_EXTENSIONS
|
| 31 |
+
|
| 32 |
+
@app.route('/health', methods=['GET'])
|
| 33 |
+
def health_check():
|
| 34 |
+
return jsonify({"status": "healthy", "model": "Shap-E Image to 3D"}), 200
|
| 35 |
+
|
| 36 |
+
@app.route('/convert', methods=['POST'])
|
| 37 |
+
def convert_image_to_3d():
|
| 38 |
+
# Check if image is in the request
|
| 39 |
+
if 'image' not in request.files:
|
| 40 |
+
return jsonify({"error": "No image provided"}), 400
|
| 41 |
+
|
| 42 |
+
file = request.files['image']
|
| 43 |
+
if file.filename == '':
|
| 44 |
+
return jsonify({"error": "No image selected"}), 400
|
| 45 |
+
|
| 46 |
+
if not allowed_file(file.filename):
|
| 47 |
+
return jsonify({"error": f"File type not allowed. Supported types: {', '.join(ALLOWED_EXTENSIONS)}"}), 400
|
| 48 |
+
|
| 49 |
+
# Get optional parameters
|
| 50 |
+
guidance_scale = float(request.form.get('guidance_scale', 3.0))
|
| 51 |
+
num_inference_steps = int(request.form.get('num_inference_steps', 64))
|
| 52 |
+
output_format = request.form.get('output_format', 'obj').lower()
|
| 53 |
+
|
| 54 |
+
# Validate output format
|
| 55 |
+
if output_format not in ['obj', 'glb']:
|
| 56 |
+
return jsonify({"error": "Unsupported output format. Use 'obj' or 'glb'"}), 400
|
| 57 |
+
|
| 58 |
+
try:
|
| 59 |
+
# Process image
|
| 60 |
+
filename = secure_filename(file.filename)
|
| 61 |
+
filepath = os.path.join(app.config['UPLOAD_FOLDER'], filename)
|
| 62 |
+
file.save(filepath)
|
| 63 |
+
|
| 64 |
+
# Open image
|
| 65 |
+
image = Image.open(filepath).convert("RGB")
|
| 66 |
+
|
| 67 |
+
# Generate 3D model
|
| 68 |
+
images = pipe(
|
| 69 |
+
image,
|
| 70 |
+
guidance_scale=guidance_scale,
|
| 71 |
+
num_inference_steps=num_inference_steps,
|
| 72 |
+
output_type="mesh",
|
| 73 |
+
).images
|
| 74 |
+
|
| 75 |
+
# Create unique output directory
|
| 76 |
+
import uuid
|
| 77 |
+
output_id = str(uuid.uuid4())
|
| 78 |
+
output_dir = os.path.join(RESULTS_FOLDER, output_id)
|
| 79 |
+
os.makedirs(output_dir, exist_ok=True)
|
| 80 |
+
|
| 81 |
+
# Export to requested format
|
| 82 |
+
if output_format == 'obj':
|
| 83 |
+
obj_path = os.path.join(output_dir, "model.obj")
|
| 84 |
+
export_to_obj(images[0], obj_path)
|
| 85 |
+
|
| 86 |
+
# Create a zip file with OBJ and MTL
|
| 87 |
+
zip_path = os.path.join(output_dir, "model.zip")
|
| 88 |
+
with zipfile.ZipFile(zip_path, 'w') as zipf:
|
| 89 |
+
zipf.write(obj_path, arcname="model.obj")
|
| 90 |
+
mtl_path = os.path.join(output_dir, "model.mtl")
|
| 91 |
+
if os.path.exists(mtl_path):
|
| 92 |
+
zipf.write(mtl_path, arcname="model.mtl")
|
| 93 |
+
|
| 94 |
+
return send_file(zip_path, as_attachment=True, download_name="model.zip")
|
| 95 |
+
|
| 96 |
+
elif output_format == 'glb':
|
| 97 |
+
# For GLB format, we need to convert the mesh
|
| 98 |
+
from trimesh import Trimesh
|
| 99 |
+
mesh = images[0]
|
| 100 |
+
vertices = mesh.verts
|
| 101 |
+
faces = mesh.faces
|
| 102 |
+
|
| 103 |
+
# Create a trimesh object
|
| 104 |
+
trimesh_obj = Trimesh(vertices=vertices, faces=faces)
|
| 105 |
+
|
| 106 |
+
# Export as GLB
|
| 107 |
+
glb_path = os.path.join(output_dir, "model.glb")
|
| 108 |
+
trimesh_obj.export(glb_path)
|
| 109 |
+
|
| 110 |
+
return send_file(glb_path, as_attachment=True, download_name="model.glb")
|
| 111 |
+
|
| 112 |
+
except Exception as e:
|
| 113 |
+
return jsonify({"error": str(e)}), 500
|
| 114 |
+
|
| 115 |
+
@app.route('/', methods=['GET'])
|
| 116 |
+
def index():
|
| 117 |
+
return """
|
| 118 |
+
<html>
|
| 119 |
+
<head>
|
| 120 |
+
<title>Image to 3D Model Converter</title>
|
| 121 |
+
<style>
|
| 122 |
+
body { font-family: Arial, sans-serif; max-width: 800px; margin: 0 auto; padding: 20px; }
|
| 123 |
+
h1 { color: #333; }
|
| 124 |
+
form { margin: 20px 0; padding: 20px; border: 1px solid #ddd; border-radius: 5px; }
|
| 125 |
+
label { display: block; margin: 10px 0 5px; }
|
| 126 |
+
input, select { margin-bottom: 10px; padding: 8px; width: 100%; }
|
| 127 |
+
button { background: #4CAF50; color: white; border: none; padding: 10px 15px; cursor: pointer; }
|
| 128 |
+
.api-info { background: #f5f5f5; padding: 15px; border-radius: 5px; }
|
| 129 |
+
pre { background: #eee; padding: 10px; overflow-x: auto; }
|
| 130 |
+
</style>
|
| 131 |
+
</head>
|
| 132 |
+
<body>
|
| 133 |
+
<h1>Image to 3D Model Converter</h1>
|
| 134 |
+
|
| 135 |
+
<form action="/convert" method="post" enctype="multipart/form-data">
|
| 136 |
+
<label for="image">Upload Image:</label>
|
| 137 |
+
<input type="file" id="image" name="image" accept=".png,.jpg,.jpeg" required>
|
| 138 |
+
|
| 139 |
+
<label for="guidance_scale">Guidance Scale (1.0-5.0):</label>
|
| 140 |
+
<input type="number" id="guidance_scale" name="guidance_scale" min="1.0" max="5.0" step="0.1" value="3.0">
|
| 141 |
+
|
| 142 |
+
<label for="num_inference_steps">Inference Steps (32-128):</label>
|
| 143 |
+
<input type="number" id="num_inference_steps" name="num_inference_steps" min="32" max="128" value="64">
|
| 144 |
+
|
| 145 |
+
<label for="output_format">Output Format:</label>
|
| 146 |
+
<select id="output_format" name="output_format">
|
| 147 |
+
<option value="obj">OBJ (for Unity)</option>
|
| 148 |
+
<option value="glb">GLB (for Three.js/Unreal)</option>
|
| 149 |
+
</select>
|
| 150 |
+
|
| 151 |
+
<button type="submit">Convert to 3D</button>
|
| 152 |
+
</form>
|
| 153 |
+
|
| 154 |
+
<div class="api-info">
|
| 155 |
+
<h2>API Documentation</h2>
|
| 156 |
+
<p>Endpoint: <code>/convert</code> (POST)</p>
|
| 157 |
+
<p>Parameters:</p>
|
| 158 |
+
<ul>
|
| 159 |
+
<li><code>image</code>: Image file (required)</li>
|
| 160 |
+
<li><code>guidance_scale</code>: Float between 1.0-5.0 (default: 3.0)</li>
|
| 161 |
+
<li><code>num_inference_steps</code>: Integer between 32-128 (default: 64)</li>
|
| 162 |
+
<li><code>output_format</code>: "obj" or "glb" (default: "obj")</li>
|
| 163 |
+
</ul>
|
| 164 |
+
<p>Example curl request:</p>
|
| 165 |
+
<pre>curl -X POST -F "image=@your_image.jpg" -F "output_format=obj" http://localhost:5000/convert -o model.zip</pre>
|
| 166 |
+
</div>
|
| 167 |
+
</body>
|
| 168 |
+
</html>
|
| 169 |
+
"""
|
| 170 |
+
|
| 171 |
+
if __name__ == '__main__':
|
| 172 |
+
app.run(host='0.0.0.0', port=int(os.environ.get('PORT', 5000)))
|