Spaces:
Sleeping
Sleeping
File size: 5,252 Bytes
a4b3779 c995af0 a4b3779 c995af0 a4b3779 c995af0 19ae9cd a4b3779 c995af0 a4b3779 1d0707d a4b3779 1d0707d a4b3779 6b75ddc 1d0707d a4b3779 6b75ddc a4b3779 6b75ddc a4b3779 1d0707d a4b3779 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 |
import gradio as gr
import numpy as np
import random
# import spaces #[uncomment to use ZeroGPU]
from diffusers import DiffusionPipeline #, FluxPipeline
import torch
# import os
# device = "cuda" if torch.cuda.is_available() else "cpu"
# torch_dtype = torch.bfloat16 if torch.cuda.is_available() else torch.float32
# model_repo = "black-forest-labs/FLUX.1-dev" # Replace to the model you would like to use
# pipe = FluxPipeline.from_pretrained(model_repo,
# torch_dtype=torch_dtype,
# token=f"{os.environ.get('tkn')}",
# #force_download=True,
# ).to(device)
#pipe.enable_model_cpu_offload()
device = "cuda" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
model_repo = "stabilityai/sdxl-turbo"
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
# @spaces.GPU #[uncomment to use ZeroGPU]
def infer(
prompt,
negative_prompt,
seed,
randomize_seed,
width,
height,
guidance_scale,
num_inference_steps,
model_repo=model_repo,
progress=gr.Progress(track_tqdm=True),
):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
pipe = DiffusionPipeline.from_pretrained(
model_repo,
torch_dtype=torch_dtype,
).to(device)
image = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
width=width,
height=height,
generator=generator,
).images[0]
return image, seed
examples = [
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
"An astronaut riding a green horse",
"A delicious ceviche cheesecake slice",
]
css = """
#col-container {
margin: 0 auto;
max-width: 640px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(" # Text2Img Gradio")
# gr.Markdown(f" ## Model '{model_repo}'")
model_dropdown = gr.Dropdown(
label="Select Model",
choices=[
"stabilityai/sdxl-turbo",
"stabilityai/stable-diffusion-xl-base-1.0",
"runwayml/stable-diffusion-v1-5",
"SG161222/Realistic_Vision_V5.1_noVAE"
],
value="stabilityai/sdxl-turbo",
)
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0, variant="primary")
result = gr.Image(label="Result", show_label=False)
with gr.Accordion("Advanced Settings", open=True):
with gr.Row():
negative_prompt = gr.Text(
label="Negative prompt",
max_lines=1,
placeholder="Enter a negative prompt",
visible=True,
)
with gr.Row():
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=777,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024, # Replace with defaults that work for your model
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024, # Replace with defaults that work for your model
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale (CFG)",
minimum=1.0,
maximum=10.0,
step=0.5,
value=3.5, # Replace with defaults that work for your model
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=1, # Replace with defaults that work for your model
)
gr.Examples(examples=examples, inputs=[prompt])
gr.on(
triggers=[run_button.click, prompt.submit],
fn=infer,
inputs=[
prompt,
negative_prompt,
seed,
randomize_seed,
width,
height,
guidance_scale,
num_inference_steps,
model_dropdown,
],
outputs=[result, seed],
)
if __name__ == "__main__":
demo.launch()
|